ВНИМАНИЕ! Если Вам ПО ТЕЛЕФОНУ предложили перевести деньги на КИВИ-КОШЕЛЁК, то это означает, что к нашим номерам подключились мошенники!!! Будьте внимательны!

Системы подачи топлива дизельного двигателя


Система питания топливом дизельного двигателя

Система питания топливом дизельного двигателя предназначена для размещения, очистки и своевременной подачи топлива в цилиндры двигателя в нужном количестве и под достаточным давлением на всех режимах его работы при любой температуре окружающего воздуха.

Дизельное топливо

Дизельное топливо является одним из продуктов переработки нефти. В нем содержатся различные углеводороды (парафины, нафтены, ароматические и др.). Число атомов углерода, входящих в молекулы дизельного топлива, достигает тридцати. Основное качество дизельного топлива — легкость воспламенения при соприкосновении с горячим воздухом. Воспламеняемость топлива характеризуется цетановым числом. Чем выше это число, тем менее стойки к окислению молекулы топлива и легче оно воспламеняется. У дизельного топлива цетановое число составляет 40 — 50 (чаще всего 45).

Важной характеристикой топлива также является его вязкость при различных температурах. Для обеспечения нормальной работы двигателя топливо не должно застывать при низкой температуре (до -60 °С). Кроме того, необходимо, чтобы топливо не было токсичным, обладало антикоррозионными и смазывающими свойствами, а также не создавало паровые пробки в топливопроводах при температурах до 50 °С.

Для автотракторных дизелей используется топливо марок А (арктическое), 3 (зимнее) и Л (летнее). Наиболее широко распространено топливо марок З (при отрицательной температуре воздуха) и Л (при температурах выше 0 °С).

Требования к агрегатам и узлам системы питания

Ко всем агрегатам и узлам системы питания предъявляются следующие основные требования:

  • герметичность
  • малые масса и габариты
  • надежность
  • коррозионная стойкость
  • малые гидравлические сопротивления
  • простота
  • низкая стоимость обслуживания

Топливопроводы и агрегаты системы питания топливом должны быть расположены в моторном отделении ТС таким образом, чтобы при их неисправности капающее топливо не попадало на детали, имеющие температуру, способную вызвать его воспламенение.

Общее устройство системы питания

Схема системы питания топливом мощного дизеля приведена на рисунке. В общем случае в систему питания топливом входят узлы, размещенные вне двигателя (на раме или в корпусе машины), и на двигателе. К первым относятся топливные баки бачок 7 для сбора топлива, предпусковой топливоподкачивающий насос 10, топливораспределительный кран 77, топливопроводы низкого давления и некоторые другие узлы. Ко вторым в первую очередь относятся основной топливоподкачивающий насос 8, топливный насос высокого давления (ТНВД) 5, форсунки 4 и топливопроводы высокого давления.

При работе двигателя топливо из топливных баков забирается основным топливоподкачивающим насосом и под давлением 0,05…0,1 МПа подается к ТНВД. По пути из баков к насосу топливо проходит через топливораспределительный кран, предпусковой топливоподкачивающий насос и фильтр 9 грубой очистки. Если на ТС установлен только один топливный бак или несколько баков, сообщающихся друг с другом, то топливораспределительный кран отсутствует. Перед поступлением в ТНВД из насоса топливо очищается от мельчайших примесей в фильтре 3 тонкой очистки. Нагнетательные секции ТНВД, приводимого в действие от коленчатого вала двигателя, в определенные моменты согласно рабочему циклу и порядку работы двигателя подают топливо под высоким давлением (до 50 МПа и более) в необходимом количестве к форсункам. Через форсунки, ввернутые в головку блока цилиндров, топливо впрыскивается в камеры сгорания в те моменты, когда в цилиндрах завершается такт сжатия.

Рис. Схема системы питания топливом мощного дизеля: 1 — топливные баки; 2 — кран для выпуска воздуха; 3 — фильтр тонкой очистки; 4 — форсунки; 5 ТНВД; 6 — двигатель; 7 — бачок для сбора топлива; 8 — основной топливоподкачивающий насос; 9 — фильтр грубой очистки; 10 — предпусковой топливоподкачивающий насос; 11 — топливораспределительный кран; топливные трубопроводы обозначены сплошной линией; трубопроводы для удаления воздуха из системы обозначены пунктиром

Перед пуском двигателя заполнение системы топливом и подача его к ТНВД осуществляются с помощью предпускового топливоподкачивающего насоса. После пуска этот насос не функционирует.

Если в ТНВД и трубопроводы высокого давления, соединяющие его с форсунками, попадает воздух, то подача топлива в цилиндры нарушается. Следовательно, нарушается и нормальный режим работы двигателя. С целью предотвращения попадания воздуха в ТНВД на пути топлива к нему помещают воздухоотстойник, расположенный в самой высокой точке системы. Обычно воздухоотстойник размещают в крышке фильтра тонкой очистки. Перед пуском двигателя в случае необходимости скопившийся в воздухоотстойнике воздух отводят в воздушные полости топливных баков 1 через кран (клапан) 2 для выпуска воздуха. Для этого при неработающем двигателе открывают кран (клапан) и с помощью предпускового насоса прокачивают систему. В этом случае топливо вытесняет воздух из воздухоотстойника в воздушную полость топливного бака через топливораспределительный кран (как показано на рисунке) или напрямую.

Топливный бак

Топливо, просочившееся в форсунках между иглой и распылителем, отводится по сливным трубопроводам в специальный бачок 7 или в какой-либо основной топливный бак.

Топливные баки служат для хранения топлива. Они могут иметь различную конфигурацию и вместимость в зависимости от конструкции конкретного ТС. Общая вместимость топливных баков определяется запасом хода машины (обычно не менее 500 км). Чаще всего баки изготавливает из листовой стали или высокопрочного пластика, стойкого к воздействию химически активного топлива. Для предотвращения коррозии внутренние поверхности стальных баков покрывают бакелитовым лаком, оцинковывают или лудят. С целью увеличения жесткости баков на их стенках иногда выштамповывают желоба, а внутри устанавливают несплошные перегородки, которые к тому же уменьшают площадь свободной поверхности топлива и ослабляют его колебанияbqвремя движения ТС.

Наливные горловины топливных баков обычно снабжают сетчатыми фильтрами. В нижней части баков размещают отстойники. Если бак имеет значительную вместимость, то слив топлива осуществляется через отверстие с пробкой и шариковым клапаном, расположенное выше отстойника. В этом случае используется специальный ключ-трубка со шлангом. Воздушное пространство баков соединяется с атмосферой через дренажные трубки или другие специальные устройства, которые должны исключать возможность попадания огня во внутреннюю полость бака и вытекания топлива при резких толчках ТС, а также (по возможности) обеспечивать очистку воздуха, поступающего в баки. Для замера количества топлива в баках раньше применялись измерительные стержни. В настоящее время для этой цели чаще всего используются электрические датчики поплавкового типа, посылающие электрический сигнал, пропорциональный уровню топлива, к соответствующему указателю на приборной панели ТС.

Топливоподкачивающий насос

Основной топливоподкачавающий насос обеспечивает бесперебойную подачу топлива из баков к ТНВД при работающем двигателе. Он обычно приводится в действие от коленчатого или распределительного вала двигателя. Может применяться и автономный электродвигатель, питаемый от генератора ТС. Использование электропривода обеспечивает равномерную подачу топлива независимо от частоты вращения коленчатого вала и возможность аварийного отключения всей системы. Существуют различные конструкции топливоподкачивающих насосов. Они могут быть:

  • шестеренными
  • плунжерными (поршневыми)
  • коловратными (пластинчатого типа)

Как правило, применяются плунжерные и коловратное насосы.

Плунжерный топливоподкачивающий насос

Плунжерный топливоподкачивающий насос состоит из корпуса 5, плунжера 7 с пружиной 6, толкателя 10 с роликом 77, пружиной 9 и штоком 8, а также клапанов — впускного 4 и нагнетательного 1 с пружинами. Толкатель с плунжером могут перемещаться вверх-вниз. Перемещение вверх происходит при повороте эксцентрика 72, изготовленного как одно целое с кулачковым валом ТНВД; перемещение вниз обеспечивают пружины 6 и 9.

При сбегании выступа эксцентрика с ролика толкателя плунжер под действием пружины б перемещается вниз, вытесняя топливо, находящееся под ним, в нагнетательную магистраль насоса. В это время нагнетательный клапан закрыт, а впускной под действием разрежения над плунжером открыт, и топливо поступает из впускной магистрали в надплунжерную полость. При движении толкателя и плунжера вверх впускной клапан закрывается под действием давления топлива, а нагнетательный, наоборот, открывается, и топливо из надплунжерной полости поступает в нижнюю камеру под плунжером. Таким образом, нагнетание топлива происходит только при движении плунжера вниз.

Если подачу топлива в цилиндры двигателя уменьшают, в выпускном трубопроводе насоса, а значит, и в полости под плунжером давление возрастает. В этом случае плунжер не может опуститься вниз даже под действием пружины 6, и толкатель со штоком перемещается вхолостую. По мере расходования топлива давление в нагнетательной полости понижается, и плунжер под действием пружины 6 опять начинает перемещаться вниз, обеспечивая подачу топлива.

Рис. Схема плунжерного топливоподкачиваюгцего насоса: 1 — нагнетательный клапан; 2 — корпус насоса ручной подкачки топлива; 3 — поршень насоса ручной подкачки топлива; 4 — впускной клапан; 5 — корпус топливоподкачивающего насоса; 6, 9 — пружины; 7 — плунжер; 8 — шток; 10 — толкатель; 11 — ролик; 12 — эксцентрик кулачкового вала

Рис. Схема коловратного топливоподкачивающего насоса: 1 — пружина редукционного клапана; 2 — редукционный клапан; 3 — перепускной клапан; 4 — пружина перепускного клапана; 5 — плавающий палец; 6 — пластина; 7 — ротор; 8 — направляющий стакан; А—В — камеры насоса

Плунжерный топливоподкачивающий насос обычно совмещен с насосом 2 ручной подкачки топлива. Данный насос устанавливается на входе в основной топливоподкачивающий насос и приводится в действие вручную за счет перемещения поршня 3 со штоком. При движении поршня вверх под ним образуется разрежение, открывается впускной клапан, и топливо заполняет подплунжерное пространство. При перемещении поршня вниз впускной клапан закрывается, а нагнетательный открывается, позволяя топливу пройти далее по топливной магистрали.

Коловратный топливоподкачивающий насос

В мощных быстроходных дизелях применяются в основном коловратные топливоподкачивающие насосы. Ротор 7 насоса приводится во вращение от коленчатого вала двигателя. В роторе имеются прорези, в которые вставлены пластины 6. Одним (наружным) концом пластины скользят по внутренней поверхности направляющего стакана 8, а другим (внутренним) — по окружности плавающего пальца 5, расположенного эксцентрически относительно оси ротора. При этом они то выдвигаются из ротора, то вдвигаются в него. Ротор и пластины делят внутреннюю полость направляющего стакана на камеры А, Б и В, объемы которых при вращении ротора непрерывно меняются. Объем камеры А увеличивается, поэтому в ней создается разрежение, под действием которого топливо засасывается из впускной магистрали. Объем камеры В уменьшается, давление в ней повышается, и топливо вытесняется в нагнетательную полость насоса. Топливо, находящееся в камере Б, переходит от входного отверстия стакана к выходному. При повышении давления в нагнетательной полости до определенного уровня открывается редукционный клапан 2, преодолевая усилие пружины 7, и излишек топлива перепускается обратно во впускную полость насоса. Поэтому в нагнетательной полости и выпускном трубопроводе поддерживается постоянное давление. Перед пуском, когда двигатель и, следовательно, основной топливоподкачивающий насос не работают, топливо через него может прокачиваться предпусковым топливоподкачивающим насосом. В этом случае открывается перепускной клапан 3, преодолевая усилие пружины 4. В закрытом положении тарелка этого клапана перекрывает отверстия в тарелке редукционного клапана.

Предпусковой топливоподкачивающий насос

Перед пуском двигателя заполнение системы топливом и подача его к ТНВД осуществляются с помощью предпускового топливоподкачивающего насоса 70. Ранее были широко распространены насосы плунжерного и диафрагменного (мембранного) типов с ручным приводом. Однако в настоящее время все чаще применяются центробежные крыльчатые насосы с приводом от электродвигателя, питаемого электрической энергией аккумуляторной батареи. Они обеспечивают более быструю прокачку топлива, не требуют затрат мускульной энергии механика-водителя и могут использоваться в качестве аварийных при отказе основного топливоподкачивающего насоса.

Фильтры грубой и тонкой очистки топлива

Очистка топлива от механических примесей и воды происходит в фильтрах грубой 9 и тонкой 3 очистки. Фильтр грубой очистки, устанавливаемый перед основным топливоподкачивающим насосом 8, задерживает частицы размерами 20… 50 мкм, на долю которых приходится 80…90 % массы всех примесей. Фильтр тонкой очистки, помещаемый между основным топливоподкачивающим насосом и ТНВД, задерживает примеси размерами 2…20 мкм.

В настоящее время в силовых установках с дизелями применяют следующие типы фильтров грубой очистки:

  • сетчатые
  • ленточно-щелевые
  • пластинчато-щелевые

У сетчатых фильтров фильтрующим элементом является металлическая сетка. Из нее можно образовывать концентрические цилиндры, через стенки которых продавливается топливо, или дискообразные секции, нанизанные на центральную трубу с отверстиями в стенке, соединенную с выходным трубопроводом.

В ленточно-щелевом фильтре фильтрующим элементом служит гофрированный стакан с намотанной на него профильной лентой. Через щели между витками ленты, образованными за счет ее выступов, топливо из пространства, окружающего фильтрующий элемент, попадает во впадины между гофрированным стаканом и лентой, а затем — в полость между дном и крышкой стакана, откуда удаляется через выпускной трубопровод.

Фильтрующий элемент пластинчато-щелевого фильтра представляет собой полый цилиндр, составленный из одинаковых тонких кольцевых дисков с отгибными выступами. За счет этих выступов между дисками образуются зазоры. Топливо поступает к наружным и внутренним поверхностям цилиндра и, проходя через щели между дисками, очищается. Очищенное топливо через торцевые отверстия в дисках направляется в верхнюю часть фильтра к выходному отверстию.

Очень часто фильтр грубой очистки совмещают с отстойником для воды, находящейся в дизельном топливе. В этом случае необходимо периодически отворачивать пробку отстойника для удаления из него скопившейся воды.

В фильтрах тонкой очистки в качестве фильтрующих элементов обычно используют картонные элементы типа «многолучевая звезда» или пакеты из картонных и фетровых дисков. Реже применяют каркасы с адсорбирующей механические примеси набивкой (например, минеральной ватой), каркасы с тканевой или нитчатой обмоткой и др.

В процессе эксплуатации ТС топливные фильтры загрязняются, что приводит к увеличению их сопротивления. Чтобы подача топлива к ТНВД не прекратилась, необходимо фильтр грубой очистки периодически промывать, а фильтрующий элемент фильтра тонкой очистки заменять новым.

ТНВД. Устройство и принцип работы

Топливный насос высокого давления 5 предназначен для точного дозирования топлива и его подачи в форсунки 4 под необходимым давлением и в определенный момент. В рядных двигателях такой насос помещают сбоку от двигателя, на верхней половине его картера. У V-образных двигателей его устанавливают в развале цилиндров. Существует множество типов ТНВД. В частности, на дизели сравнительно небольшой мощности, предназначенные для легковых автомобилей, как правило, устанавливают ТНВД распределительного типа с одним нагнетающим плунжером-распределителем. Однако мощные многоцилиндровые дизели чаще всего оборудованы многоплунжерными насосами. Пример такого ТНВД для шестицилиндрового V-образного дизеля представлен на рисунке.

Насос состоит из корпуса 5 с крышками, шести насосных секций, механизма привода насосных секций и механизма поворота плунжеров. Каждая насосная секция включает в себя плунжер 8, возвратную пружину 11 с опорными шайбами, нагнетательный клапан 3 с седлом, пружиной и упором, а также штуцер 2 и другие вспомогательные направляющие и крепежные детали. Механизм привода насосных секций состоит из кулачкового вала 7 и роликовых толкателей 6 с регулировочными болтами. В механизм поворота плунжеров входят поворотные втулки 10 с зубчатыми венцами и зубчатая рейка 9 с втулками и ограничительным винтом. Вдоль секций в корпусе насоса высверлены два продольных канала 1 и 4, соединенных друг с другом поперечными каналами. Каждый плунжер очень точно подогнан к своей гильзе, что обеспечивает достижение высокого давления с наименьшей утечкой топлива через зазоры.

Рис. Топливный насос высокого давления: 1, 4 — продольные каналы; 2 — штуцер; 3 — нагнетательный клапан; 5 — корпус насоса; 6 — роликовый толкатель; 7 — кулачковый вал; 8 — плунжер; 9 — зубчатая рейка; 10 — поворотная втулка; 11 — возвратная пружина

Насос работает следующим образом. Кулачковый вал приводится во вращение от коленчатого вала двигателя с помощью зубчатой передачи (угловая скорость кулачкового вала в 2 раза меньше скорости коленчатого). Вращаясь, кулачковый вал перемещает своими кулачками роликовые толкатели 6, которые поднимают плунжеры вверх.

Обратный ход толкателей и плунжеров обеспечивается возвратными пружинами. К каналу 4 подводится топливо от топливоподкачивающего насоса, предварительно очищенное в фильтре тонкой очистки.

Когда плунжер находится в нижнем положении, топливо из канала 4 попадает в образовавшуюся надплунжерную полость. При движении плунжера вверх входное отверстие закрывается, и топливо под большим давлением проходит через нагнетательный клапан, штуцер и топливопровод высокого давления к форсунке.

Нагнетание топлива происходит до тех пор, пока надплунжерная полость не соединится со сливным каналом 1 с помощью осевых, радиальных и винтовых проточек в плунжере. При постоянном ходе плунжера, определяемом высотой выступа кулачка, количество подаваемого к форсунке топлива регулируется поворотом плунжера с помощью зубчатой рейки и поворотной втулки с зубчатым венцом. Винтовая проточка в плунжере выполнена так, что по мере его поворота изменяется расстояние от края перепускного отверстия, связанного с каналом 7, до края отсечной кромки винтовой проточки. При этом длина рабочего хода плунжера, во время которого происходит нагнетание топлива, также изменяется.

Для того чтобы топливо, подаваемое в цилиндры, успевало своевременно сгорать, и двигатель развивал наибольшую мощность, необходимо при росте частоты вращения коленчатого вала несколько увеличивать угол опережения впрыскивания топлива.

Регулирование этого угла у насосов с механическим управлением обеспечивается специальной центробежной муфтой, которая устанавливается в корпусе ТНВД и пропорционально частоте вращения коленчатого вала смещает на некоторый угол кулачковый вал насоса в направлении его вращения.

Механизм всережимного регулятора

С ТНВД соединен механизм всережимного регулятора. Он автоматически поддерживает заданную водителем частоту вращения коленчатого вала, устанавливает минимальную частоту на холостом ходу, а также ограничивает максимальную частоту. Механизм регулятора представляет собой систему тяг, пружин и упоров, связанных с зубчатой рейкой ТНВД, перемещение которых зависит от частоты вращения кулачкового вала.

Форсунка

Форсунка служит для подачи топлива в цилиндр двигателя под высоким давлением в мелкораспыленном виде.

Типичная форсунка включает в себя корпус 5 с распылителем 3, направляющим штифтом 4 и накидной гайкой 2, иглу 1 распылителя со штоком б, пружину 7 с опорной шайбой, регулировочным винтом 9 и втулкой 8, колпачковую гайку 10 и топливоприемный штуцер 12 с сетчатым фильтром 11. Распылитель и игла должны быть очень точно подогнаны друг к другу. В верхней части распылителя имеются один кольцевой и несколько (чаще всего три) вертикальных топливных канала, а в нижней части — центральные входной и выходной каналы с распыляющими отверстиями. Диаметр этих отверстий составляет 0,2…0,4 мм. Игла своим нижним конусным концом закрывает выходной канал. Распылитель плотно прикрепляется к корпусу-форсунки с помощью накидной гайки. Топливный канал корпуса соединяется с кольцевым каналом распылителя через его вертикальные каналы. Правильное положение распылителя относительно корпуса обеспечивает направляющий штифт.

Рис. Форсунка: 1 — игла распылителя; 2 — накидная гайка; 3 — распылитель; 4 — направляющий штифт; 5 — корпус форсунки; 6 — шток; 7 — пружина; 8 — втулка; 9 — регулировочный винт; 10 — колпачковая гайка; 11 — сетчатый фильтр; 12 — топливоприемный штуцер

Топливо, подаваемое к форсунке по топливоприемному штуцеру, проходит через сетчатый фильтр и по топливным каналам корпуса  в верхней части распылителя поступает в его кольцевую полость. По достижении необходимого давления в этой полости, действующего кроме прочего на конический поясок иглы, она поднимается вверх, преодолевая сопротивление пружины. В это время открывается выходной канал, и топливо через него и распыливающие отверстия поступает в камеру сгорания цилиндра двигателя.

После прекращения подачи топлива насосной секцией ТНВД и падения давления игла снова садится в свое седло, прекращая впрыскивание топлива. Просочившееся через неплотности топливо поступает в верхнюю часть форсунки и через отверстия в винте 9 и гайке 10 по специальному трубопроводу сливается в бачок 7 для сбора топлива.

Аккумуляторная система питания топливом

Современные жесткие требования к уровню выбросов вредных веществ двигателями внутреннего сгорания вынудили конструкторов дизелей искать новые решения в области топливной аппаратуры для них. Дело в том, что даже самые совершенные ТНВД не могут обеспечить такого давления топлива, при котором оно распылялось бы настолько мелко, что могло бы полностью сгореть в камере сгорания.

Неполное сгорание приводит к большему расходу топлива, а самое главное — к повышению в отработавших газах концентрации вредных веществ, в частности сажи. В связи с этим в настоящее время для дизелей с непосредственным впрыском все чаще применяется так называемая аккумуляторная система питания топливом.

Основное отличие такой системы от «классической» заключается в наличии общей топливной рампы (аккумулятора давления), в которой во время работы двигателя создается очень высокое давление.

Топливная рампа соединена трубопроводами высокого давления с электронно-управляемыми топливными форсунками, иглы которых перемещаются с помощью электромагнитов по сигналам от компьютера (электронного блока) управления двигателем. Такая система питания топливом позволяет оптимизировать работу двигателя практически по всем параметрам.

Видео: Система питания дизеля

ustroistvo-avtomobilya.ru

Дизельный двигатель: устройство системы питания

Система питания современного дизельного ДВС представляет собой целый комплекс устройств. Основной задачей становится не просто подача топлива к инжекторным форсункам, а еще и подача горючего под высоким давлением. Давление необходимо для высокоточного дозированного впрыска в камеру сгорания цилиндра. Система питания дизеля выполняет следующие важнейшие функции:

  • дозирование строго определенного количество топлива с учетом нагрузки на  двигатель в том или ином режиме его работы;
  • эффективный впрыск топлива в заданный промежуток времени с определенной интенсивностью;
  • распыление и максимально равномерное распределение горючего по объему камеры сгорания в цилиндрах дизельного ДВС;
  • предварительная фильтрация топлива перед подачей горючего в насосы системы питания и инжекторные форсунки;
Рекомендуем также прочитать статью об устройстве топливного насоса высокого давления. Из этой статьи вы узнаете о принципах работы ТНВД, его роли в системе топливоподачи дизельного двигателя  и особенностях эксплуатации устройства.

Особенности дизельного топлива

Большинство требований к системе питания дизельного мотора выдвигается с учетом того, что дизельное топливо имеет ряд специфических особенностей. Горючее такого рода представляет собой смесь керосиновых и газойлевых соляровых фракций. Дизельное топливо получают после того, как из нефти реализуется отгон бензина.

Дизельное топливо обладает целым рядом свойств, главным из которых принято считать показатель самовоспламеняемости, который оценивается цетановым числом. Представленные в продаже виды дизельного топлива имеют цетановое число на отметке 45–50. Для современных дизельных агрегатов наилучшим топливом является горючее с большим показателем цетанового числа.

Система питания дизельного ДВС обеспечивает подачу хорошо очищенного дизельного топлива к цилиндрам, ТНВД сжимает горючее до высокого давления, а форсунка подает его в распыленном на мельчайшие частицы виде в камеру сгорания. Распыленное дизельное топливо смешивает с горячим (700–900 °С) воздухом, который нагревается до такой температуры от высокого сжатия в цилиндрах (3–5 МПа) и самовоспламеняется.

Обратите внимание, рабочая смесь в дизельном моторе не поджигается отдельным устройством, а воспламеняется самостоятельно от контакта с разогретым воздухом под давлением. Эта особенность сильно отличает дизельный ДВС от бензиновых аналогов.

Дизельное топливо имеет еще и более высокую плотность сравнительно с бензином, а также обладает лучшей смазывающей способностью. Не менее важной характеристикой выступает вязкость, температура застывания и чистота дизельного топлива. Температура застывания позволяет делить топливо на три базовых сорта горючего: летнее дизельное топливо, зимний дизель и арктическое дизельное топливо.

Схема устройства системы питания дизельного ДВС

Система питания дизельного двигателя состоит из следующих базовых элементов:

  1. топливный бак;
  2. фильтры грубой очистки дизтоплива;
  3. фильтры тонкой очистки топлива;
  4. топливоподкачивающий насос;
  5. топливный насос высокого давления (ТНВД);
  6. инжекторные форсунки;
  7. трубопровод низкого давления;
  8. магистраль высокого давления;
  9. воздушный фильтр;

Дополнительными элементами частично становится электронасосы, выпуск отработанных газов, сажевые фильтры, глушители и т.д. Систему питания дизельных ДВС принято делит на две группы топливной аппаратуры:

  • дизельная аппаратура для повода топлива (топливоподводящая);
  • дизельная аппаратура для подвода воздуха (воздухоподводящая);

Топливоподводящая аппаратура может иметь различное устройство, но сегодня наиболее распространена система разделенного типа. В такой системе топливный насос высокого давления (ТНВД) и форсунки реализованы в виде отдельных устройств. Топливо подается в дизельный двигатель по магистралям высокого и низкого давления.

Дизельное топливо хранится, фильтруется и подается к ТНВД под невысоким давлением посредством магистрали низкого давления. В магистрали высокого давления ТНВД поднимает давление в системе для осуществления подачи и впрыска строго определенного количества топлива в рабочую камеру сгорания дизельного двигателя в заданный момент.

В системе питания дизеля присутствуют сразу два насоса:

  • топливоподкачивающий насос;
  • топливный насос высокого давления;

Топливоподкачивающий насос обеспечивает подачу топлива из  топливного бака, прокачивает горючее через фильтр грубой и тонкой очистки. Давление, которое создает топливоподкачивающий насос, позволяет осуществить подачу топлива по топливопроводу низкого давления к топливному насосу высокого давления.

ТНВД реализует подачу топлива к форсункам под высоким давлением. Подача происходит в соответствии с порядком работы цилиндров дизельного мотора. Топливный насос высокого давления имеет определенное количество одинаковых секций. Каждая из таких секций ТНВД соответствует определенному цилиндру дизельного двигателя.

Существует также система питания дизельных двигателей неразделенного типа  и применяется на дизельных двухтактных двигателях. В  такой системе топливный  насос высокого давления и форсунка объединены в одном устройстве под  названием насос-форсунка.

Данные моторы работают жестко и шумно, имеют небольшой срок службы. В конструкции их системы питания отсутствуют топливопроводы магистрали высокого давления. Указанный тип ДВС не имеет большого распространения.

Вернемся к массовой конструкции дизельного мотора. Дизельные форсунки располагаются в головке блока цилиндров (ГБЦ) дизельного двигателя. Основной их задачей становится точное распыление горючего в камере сгорания двигателя. Топливоподкачивающий насос подает к ТНВД большое количество топлива. Получившиеся избытки горючего и проникающий в систему топливоподачи воздух возвращаются в топливный бак по специальным трубопроводам, которые называются дренажными. 

Инжекторные дизельные форсунки бывают двух видов:

  • дизельная форсунка закрытого типа;
  • дизельная форсунка открытого типа;

Четырехтактные дизельные моторы преимущественно получают форсунки закрытого типа. В таких устройствах сопла форсунки, которые представляют собой отверстие, закрываются особой запорной иглой.

Получается, что внутренняя полость, расположенная внутри корпуса распылителей форсунок, сообщается с камерой сгорания только во время открытия форсунки  и в момент впрыска дизельного топлива. 

Ключевым элементом в конструкции форсунки выступает распылитель. Распылитель получает от одного до целой группы сопловых отверстий. Именно эти отверстия и образуют факел топлива в момент впрыска. От их количества и расположения зависит форма факела, а также пропускная способность форсунки.

Система питания турбодизеля

Система турбонаддува активно применяется для эффективного повышения мощности как бензинового, так и дизельного двигателя без увеличения рабочего объема камеры сгорания в конструкции силового агрегата. Топливоподводящая система в турбированных ДВС остается практически без изменений, зато схема и способ подачи воздуха в турбомоторах существенно меняется по сравнению с атмосферными агрегатами.

Наддув в дизельном двигателе реализован путем использования турбокомпрессора. Турбина в дизельном моторе использует энергию отработавших газов. Воздух в турбокомпрессоре сжимается, далее охлаждается и нагнетается в камеру сгорания дизельного ДВС под давлением на отметке от 0,15 до 0,2 МПа.

Величина давления позволяет разделить системы турбонаддува на:

  • решения с низким наддувом, когда давление не превышает 0,15 МПа;
  • турбокомпрессор среднего наддува означает, что давление нагнетаемого в цилиндры воздуха соответствует показателю 0,2 МПа;
  • высокий наддув подразумевает давление свыше 0,2 МПа;
Основной задачей системы турбонаддува является подача порции воздуха в цилиндры мотора на дизеле или бензине под давлением. Дизельный агрегат с системой турбонаддува называется турбодизельным двигателем.

Использование турбокомпрессора для ДВС улучшает наполнение цилиндров двигателя воздухом. Автоматически происходит повышение эффективности сгорания порции впрыскиваемого топлива. Турбонаддув позволяет увеличить мощность силового агрегата на 30% и более.

Негативными последствиями в результате использования турбонаддува, особенно с высокими показателями давления нагнетаемого воздуха, является увеличение общей температуры в камере сгорания в результате интенсивного горения топлива, а также значительно возрастающие механические нагрузки на детали кривошипно-шатунного механизма (КШМ) и газораспределительного механизма (ГРМ) по сравнению с атмосферными силовыми установками.

krutimotor.ru

Системы впрыска дизельных двигателей

Концептуально двигатели внутреннего сгорания – бензиновые и дизельные практически идентичны, но существует между ними ряд отличительных особенностей. Одной из основных является разное протекание процессов горения в цилиндрах. У дизеля топливо загорается от воздействия высоких температур и давления. Но для этого необходимо, чтобы дизтопливо подавалось непосредственно в камеры сгорания не только в строго определенный момент, но еще и под высоким давлением. И это обеспечивают системы впрыска дизельных двигателей.

Постоянное ужесточение экологических норм, попытки получить больший выход мощности при меньших затратах топлива обеспечивают появление все новых конструктивных решений в топливной системе дизеля.

Принцип работы у всех существующих видов впрыска дизеля идентичен. Основными элементами питания являются топливный насос высокого давления (ТНВД) и форсунка. В задачу первой составляющей входит нагнетание дизтоплива, благодаря чему давление в системе значительно повышается. Форсунка же обеспечивает подачу топлива (в сжатом состоянии) в камеры сгорания, при этом распыляя его для обеспечения лучшего смесеобразования.

Стоит отметить, что давление топлива напрямую влияет на качество сгорания смеси. Чем оно выше, тем дизтопливо лучше сгорает, обеспечивая больший выход мощности и меньшее содержание загрязняющих веществ в отработанных газах. И для получения более высоких показателей давления использовали самые разные конструктивные решения, что и привело к появлению разных видов систем питания дизеля. Причем все изменения касались исключительно указанных двух элементов – ТНВД и форсунок. Остальные же составляющие – бак, топливопроводы, фильтрующие элементы, по сути, идентичны во всех имеющихся видах.

Типы дизельных систем питания

Дизельные силовые установки могут быть оснащены системой впрыска:

  • с рядным насосом высокого давления;
  • с насосами распределительного типа;
  • с насос-форсунками;
  • аккумуляторного типа (Common Rail).

Далее рассмотрим лишь некоторые особенности, которыми обладают указанные системы впрыска дизельных двигателей, а также их положительные и отрицательные качества.

С рядным насосом

Система питания с рядным ТНВД можно считать «родителем» всех остальных, поскольку она является первой, используемой на дизельных моторах. Но сейчас она уже считается устаревшей и практически не используется.

Рядный ТНВД на 8 форсунок

Изначально эта система была полностью механической, но после в ее конструкции начали использоваться электромеханические элементы (касается регуляторов изменения цикловой подачи дизтоплива).

Основная особенность этой системы заключена в насосе. В нем плунжерные пары (прецизионные элементы, создающие давление) обслуживали каждый свою форсунку (количество их соответствовало количеству форсунок). Причем эти пары размещались в ряд, отсюда и название.

К достоинствам системы с рядным насосом можно отнести:

  • Надежность конструкции. Насос имел систему смазки, что обеспечивало узлу большой ресурс;
  • Невысокая чувствительность к чистоте топлива;
  • Сравнительная простота и высокая ремонтопригодность;
  • Большой ресурс насоса;
  • Возможность работы мотора при отказе одной секции или форсунки.

Но недостатки у такой системы более существенны, что и привело к постепенному отказу от нее и отданию предпочтения более современным. Негативными сторонами такого впрыска считаются:

  • Невысокие быстродействие и точность дозировки топлива. Механическая конструкция просто не способна это обеспечить;
  • Сравнительно невысокое создаваемое давление;
  • В задачу ТНВД входит не только создание давления топлива, но еще и регулировка цикловой подачи и момент впрыска;
  • Создаваемое давление напрямую зависит от оборотов коленчатого вала;
  • Большие габариты и масса насоса.

Эти недостатки, и в первую очередь – невысокое создаваемое давление, привело к отказу от этой системы, поскольку она просто перестала вписываться в стандарты по экологичности.

С насосом распределенного типа

ТНВД распределенного впрыска стала следующим этапом в развитии систем питания дизельных агрегатов.

Изначально такая система была тоже механической и отличалась от описанной выше лишь конструкцией насоса. Но со временем в ее устройство добавили систему электронного управления, которая улучшила процесс регулировки впрыска, что позитивно сказалось на показателях экономичности мотора. Определенный период такая система вписывалась в стандарты экологичности.

Особенность этого типа впрыска сводилась к тому, что конструкторы отказались от использования многосекционной конструкции насоса. В ТНВД начала использоваться всего одна плунжерная пара, обслуживающая все имеющиеся форсунки, количество которых варьируется от 2 до 6. Для обеспечения подачи топлива на все форсунки, плунжер совершает не только поступательные движения, но еще и вращательные, которые и обеспечивают распределение дизтоплива.

ТНВД с насосом распределенного типа

Позже эта система добавилась новым типом насоса – роторным, у которого устанавливаются несколько плунжеров, но распределенная подача осталась. Это позволило увеличить создаваемое насосом давление.

К положительным качествам таких систем относились:

  • Малые габаритные размеры и масса насоса;
  • Лучшие показатели по топливной экономичности;
  • Использование электронного управления повысило показатели системы.

К недостаткам же системы с насосом распределенного типа относятся:

  • Небольшой ресурс плунжерной пары;
  • Смазка составных элементов осуществляется топливом;
  • Многофункциональность насоса (помимо создания давления он еще управляется подачей и моментом впрыска);
  • При отказе насоса система прекращала работать;
  • Чувствительность к завоздушиванию;
  • Зависимость давления от оборотов двигателя.

Широкое распространение такой тип впрыска получил на легковых авто и небольшом коммерческом транспорте.

Насос-форсунки

Насос-форсунки можно считать отдельной веткой в дизельных системах питания, поскольку в конструкции ТНВД как таковой не используется.

Особенность этой системы заключена в том, что форсунка и плунжерная пара объединены в единую конструкцию. Привод секции этого топливного узла осуществляется от распределительного вала.

Примечательно, что такая система может быть как полностью механической (управление впрыском осуществляется рейкой и регуляторами), так и электронной (используются электромагнитные клапаны).

Насос-форсунка

Некой разновидностью этого типа впрыска является использование индивидуальных насосов. То есть для каждой форсунки предусматривается своя секция, приводимая в действие от распределительного вала. Секция может располагаться непосредственно в ГБЦ или быть вынесенной в отдельный корпус. В такой конструкции используются обычные гидравлические форсунки (то есть, система механическая). В отличие от впрыска с ТНВД, магистрали высокого давления – очень короткие, что позволило значительно увеличить давление. Но такая конструкция особого распространения не получила.

К положительным качествам насос-форсунок питания можно отнести:

  • Значительные показатели создаваемого давления (самые высокие среди всех используемых типов впрыска);
  • Небольшая металлоемкость конструкции;
  • Точность дозировки и реализации многократного впрыска (в форсунках с электромагнитными клапанами);
  • Возможность работы двигателя при отказе одной из форсунок;
  • Замена поврежденного элемента не сложная.

Но имеются в таком типе впрыска и недостатки, среди которых:

  • Неремонтопригодность насос-форсунок (при поломке требуется их замена);
  • Высокая чувствительность к качеству топлива;
  • Создаваемое давление зависит от оборотов двигателя.

Насос-форсунки получили широкое распространение на коммерческом и грузовом транспорте, а также эту технологию использовали некоторые производители легковых авто. Сейчас она не очень часто используется из-за высокой стоимости обслуживания.

Common Rail

Аккумуляторная система (Common Rail) пока является самой совершенной в плане экономичности. Также она полностью вписывается в последние стандарты экологичности. К дополнительным «плюсам» можно отнести ее применяемость на любых дизельных двигателях, начиная от легковых авто и заканчивая морскими судами.

Система впрыска Common Rail

Особенность ее заключена в том, что многофункциональность ТНВД не требуется, и в его задачу входит только нагнетание давления, причем не для каждой форсунки отдельно, а общую магистраль (топливную рампу), а уже от нее дизтопливо подается на форсунки.

При этом топливные трубопроводы, между насосом, рампой и форсунками имеют сравнительно небольшую длину, что позволило повысить создаваемое давление.

Управление работой в этой системе осуществляется электронным блоком, что значительно увеличило точность дозировки и скорость работы системы.

Положительные качества Common Rail:

  • Высокая точность дозировки и использование многорежимного впрыска;
  • Надежность ТНВД;
  • Нет зависимости значения давления от оборотов мотора.

Негативные же качества у этой системы такие:

  • Чувствительность к качеству топлива;
  • Сложная конструкция форсунок;
  • Отказ системы при малейших потерях давления из-за разгерметизации;
  • Сложность конструкции из-за наличия ряда дополнительных элементов.

Несмотря на эти недостатки автопроизводители все больше отдают предпочтение Common Rail перед другими видами систем впрыска.

autoleek.ru

Какие существуют системы подачи топлива в дизельном ДВС

04 июня 2018 Категория: Полезная информация.

Как мы знаем, в дизельном ДВС топливо воспламеняется не от внешнего источника (искра зажигания в бензиновом моторе), а в результате сильного сжатия и нагрева. При этом топливно-воздушная смесь подается и распыляется в цилиндрах под высоким давлением. С этой целью в дизелях используются разные типы систем подачи топлива.

Топливная система дизельных ДВС: основные принципы

Сначала воздух подается в цилиндр, затем сжимается, нагреваясь в процессе до экстремальных температур, и лишь к концу такта сжатия в цилиндр подается дизельное топливо. Подается таким образом: впрыскивается в камеру сгонария под высоким давлением (от 100 до 2000 атмосфер) и распыляется. Поэтому, вне зависимости от типа топливной системы дизеля, в ней всегда есть два компонента:

  • тот, что создает высокое давление – топливный насос высокого давления (ТНВД)
  • и тот, что впрыскивает и разбрызгивает горючее по камере – форсунка.

В зависимости от типа топливной системы дизельного ДВС, отличается конструкция ТНВД и устройство форсунок. Также отличаются схемы управления этими элементами и место их расположения.

Основные типы топливных систем дизеля

Наибольшее распространение получили 4 типа топливных систем дизельных моторов:

  • рядный ТНВД
  • ТНВД распределительного типа
  • насос-форсунки
  • система Common Rail

Рядный ТНВД – проверенное десятилетиями решение, которое активно применяется на грузовой и специальной технике с дизельными моторами. В основе этой системы подачи топлива находится работа плунжерной пары. Цилиндр движется в гильзе, создавая давление и сжимая топливо до необходимых показателей. Как только они достигнуты, открывается специальный клапан, подающий топливо на форсунку, которая впрыскивает его в цилиндр. Плунжер в это время движется вниз, открывает канал для впуска горючего в пространство гильзы с помощью топливоподкачивающего насоса, и цикл повторяется.

Работа самого плунжера становится возможна благодаря кулачковому валу, который приводится от мотора. Кулачки «толкают» клапана, а мкфта опережения впрыска, соединяющая ТНВД и двигатель, корректирует работу топливной системы.

Неоспоримые достоинства системы подачи топлива с рядными ТНВД – их ремонтопригодность и доступность обслуживания.

ТНВД распределительного типа конструктивно напоминает рядный топливный насос. Отличие заключается в количестве плунжерных пар. Если в рядном ТНВД одна пара идет на один цилиндр, то в распределительном работы одной плунжерной пары достаточно, чтобы обслуживать два, три, и даже шесть цилиндров. Это достигается через опцию вращения плунжера вокруг оси. Вращаясь, плунжер поочередно открывает выпускные клапана, подавая горючее на форсунки нескольких цилиндров.

Эволюция распределительных ТНВД привела к тому, что появились уже роторные топливные насосы: в них плунжеры помещаются в ротор и в процессе работы движутся навстречу двуг другу, пока ротор вращает их, распределяя тем самым топливо по камере сгорания.

Преимущество системы подачи топлива с распределительным ТНВД – компактность самого устройства. Недостатки – сложность настройки, применение схем электронного управления и корректировки работы.

Система подачи топлива в цилиндр с помощью насос-форсунок вообще исключает необходимость ТНВД как отдельного элемента. В этом случае, форсунка и насосная секция – это один узел в общем корпусе.

В результате достигается легкость регулировки подачи топлива в конкретный цилиндр, а при выходе из строя одной насос-форсунки, остальные продолжают работать, что облегчает ремонт. Конструктивно, насос-форсунки приводят в действие плунжеры распредвал ГРМ в головке блока цилиндров.

Система подачи топлива насос-форсунками распространена не только на грузовых, но и на легковых автомобилях. К недостаткам ее можно отнести высокую стоимость запчастей, а также крайнюю чувствительность к качеству дизельного топлива. Мельчайшие примеси в горючем могут легко вывести из строя насос-форсунку, что отражается на стоимости эксплуатации такого решения в личном автомобиле.

Система Common Rail стала своего рода прорывом в части решения механизма подачи топлива в дизельных ДВС. Эта система позволяет экономить топливо при высоком КПД дизеля, что и сделало ее такой популярной. Common Rail придумали инженеры Bosch еще в 90-х годах. Сегодня большинство дизельного транспорта оснащается именно Коммон Реил.

Главное отличие этой системы – наличие аккумулятора высокого давления в общей магистрали. Туда топливо нагнетается отдельным ТНВД, чтобы затем под постоянным давлением подаваться на форсунки. Именно постоянство давления дает возможность быстро и эффективно впрыскивать горючее в цилиндр. Как результат – производительная, мягкая и комфортная работа дизельного двигателя. Бонусом – упрощение конструкции самого ТНВД в системе Common Rail.

Управляется работа системы отдельным ЭБУ: группа датчиков сообщает контроллеру, сколько и как скоро нужно подать дизельное топливо в цилиндры. С другой стороны, сложность и недостаток Коммон Реил обусловлена как раз умной электроникой и принципом работы системы. Поэтому владельцам таких решений стоит выбирать качественное топливо и своевременно менять топливные фильтры.

О том, как еще продлить жизнь вашего дизельного двигателя, мы писали здесь.

Если вы в поиске качественных запчастей для своего дизельного двигателя, проверьте наш каталог

ПЕРЕЙТИ В КАТАЛОГ

www.dieselkraft.by

Как устроена система подачи топлива дизельного ДВС

29 июня 2018 Категория: Полезная информация.

В дизельном двигателе предусмотрен целый комплекс узлов и деталей, задача которого состоит в подаче топлива на форсунки под высоким давлением.

Система питания дизельного ДВС выполняет следующие функции:

  • фильтрует топливо перед подачей его на форсунки
  • гарантирует точное дозирование и впрыск в нужный момент топлива в камеру сгорания, в зависимости от режима и нагрузки на двигатель
  • обеспечивает распыление и равномерное распределение горючего по стенкам камеры сгорания в цилиндре.

Работу системы питания дизельного двигателя вкратце можно описать так: хорошо очищенное ДТ подается к цилиндрам, топливный насос высокого давления (ТНВД) сжимает горючее и передает его на форсунку под высоким давлением. Форсунка распыляет и впрыскивает топливо в камеру сгорания, где оно смешивается с горячим (нагретым от высокого сжатия внутри цилиндра до 700-900 градусов по Цельсию) воздухом и самовоспламеняется.

Это и есть основное отличие работы дизельного ДВС от бензинового: воспламенение рабочей смеси происходит самостоятельно, не требуя поджигания отдельным устройством.

Общая схема системы питания дизельного ДВС

Базовые элементы системы питания дизельного ДВС:

  • топливный бак
  • фильтры грубой очистки топлива
  • фильтры тонкой очистки топлива
  • топливоподкачивающий насос
  • ТНВД
  • форсунки
  • трубопровод низкого давления
  • магистраль высокого давления

Помимо базовых элементов, в зависимости от специфики двигателя, в система может дополняться электронасосами, механизмом выпуска отработанных газов, сажевыми фильтрами и т.п.

Специалисты выделяют в системе питания дизельную аппаратуру:

  • для подвода топлива (топливоподводящая аппаратура)
  • для подвода воздуха (воздухопроводящая)

Топливоподводящая аппаратура имеет разные варианты устройства. Самый распространенный вариант -  ТНВД и форсунки разделены как самостоятельные устройства, топливо подводится к двигателю по магистралям высокого и низкого давления.

Магистраль низкого давления хранит, фильтрует и подает горючее к ТНВД. Задача же магистрали высокого давления - поднять давление, необходимое для точной подачи и дозированного впрыска горючего в цилиндр.

Что касается насосов в системе питания, их два.

Топливоподкачивающий подает топливо из бака, очищает его с помощью фильтров грубой и тонкой очистки (прогоняя через них), а затем под давлением подает горючее к ТНВД.

Задача ТНВД - распределить топливо по секциям (каждая соответствует конкретному цилиндру) и подать его на форсунки под высоким давлением соответственно циклу работы двигателя (очередности работы цилиндров).

Расположенные в головке блока цилиндров форсунки отвечают за точный дозированный впрыск и распыление горючего по стенкам камеры сгорания. Лишнее горючее вместе с воздухом отводится обратно в бак по дренажным трубопроводам.

Дизельные форсунки бывают закрытого и открытого типа. Рядовые четырехтактные дизельные ДВС оснащены форсунками закрытого типа, то есть их сопла (отверстие) закрываются запорной иглой, обеспечивая герметичность. То есть сообщение внутренней полости форсунок и камеры сгорания происходит только в момент открытия форсунки (впрыска топлива в камеру).

Важно: встречается нераздельная система питания дизеля, где ТНВД и форсунка объединены в единый узел - насос-форсунку. Но из-за специфики работы таких устройств (жесткая шумная работа двигателя), это решение не получило широкого распространения.

Чем отличается система питания турбированного дизельного мотора

Предназначение турбонаддува - повысить мощность двигателя без его конструктивных изменений вроде увеличения объема камеры сгорания и пр. Топливопроводящая система в дизельном двигателе с турбиной почти не отличается от атмосферного дизеля. А вот алгоритм и принцип подачи воздуха в цилиндр другой.  

Турбокомпрессор задействует энергию отработавших газов. Воздух поступает в турбину, сжимается там, охлаждается и нагнетается под высоким давлением в камеру сгорания. Турбины делятся на категории в зависимости от величины давления, которое они создают:

  • турбокомпрессоры с низким наддувом - давление не выше 0,15 МПа
  • среднего наддува - давление 0,2 МПа
  • высокого наддува - давление свыше 0,2 МПа

Система турбонаддува улучшает наполнение цилиндров воздухом и тем самым повышает эффективность сгорания топлива.  Так удается увеличить мощность турбированного дизельного ДВС на 30% и более, по сравнению с атмосферным.

К негативным последствиям наличия турбокомпрессора на дизельном ДВС относят увеличение температуры в камере сгорания. Это происходит из-за более интенсивного сгорания топливной смеси. Как следствие, возрастает механическая нагрузка на детали кривошипно-шатунного механизма и механизма газораспределения, что снижает ресурс турбированного двигателя в целом, по сравнению с атмосферным.

О том, какие существуют системы подачи топлива в дизельных двигателях, мы писали здесь.

Если вы в поиске качественных запчастей для своего дизельного двигателя, проверьте наш каталог

ПЕРЕЙТИ В КАТАЛОГ

www.dieselkraft.by

Система подачи топлива в дизельных двигателях: разновидности и отличия

Как известно, принцип работы дизельного двигателя несколько отличается от бензиновых аналогов. Главным отличием можно считать воспламенение топливно-воздушной смеси, которое происходит не от внешнего источника (искры зажигания), а от сильного сжатия и нагрева.

Другими словами, в дизельном двигателе происходит самовоспламенение топлива. При этом горючее должно подаваться под крайне высоким давлением, так как необходимо максимально эффективно распылить горючее в цилиндрах дизельного мотора. В этой статье мы поговорим о том, какие системы впрыска дизельных двигателей сегодня активно используются, а также рассмотрим их устройство и принцип работы.

Как работает топливная система дизельного двигателя

Как уже было сказано выше, в дизельном двигателе происходит самовоспламенение рабочей смеси топлива и воздуха. При этом сначала в цилиндр подается только воздух, затем этот воздух сильно сжимается и нагревается от сжатия. Чтобы произошло возгорание, дизтопливо (солярку) нужно подать ближе к концу такта сжатия.

С учетом того, что воздух сильно сжимается, горючее также необходимо впрыснуть под высоким давлением и эффективно распылить. В различных дизельных ДВС давление впрыска может  отличаться, начиная, в среднем, с отметки в 100 атмосфер и заканчивая впечатляющим показателем более 2 тыс. атмосфер.

Для наиболее эффективной подачи топлива и обеспечения оптимальных условий для самовоспламенения заряда с последующим полноценным сгоранием смеси топливный впрыск реализован через дизельную форсунку.

Получается, независимо от того, какой тип системы питания используется, в дизельных двигателях всегда присутствуют два основных элемента:

Другими словами, на многих дизелях давление создает ТНВД (топливный насос высокого давления), а подача дизтоплива в цилиндры происходит через  форсунки. Что касается отличий, в разных системах топливоподачи насос может иметь ту или иную конструкцию, также по своему устройству отличаются и сами дизельные форсунки.

Еще системы питания могут отличаться по расположению тех или иных составных элементов, имеют разные схемы управления и т.д. Давайте рассмотрим системы впрыска дизельных двигателей более подробно.

Системы питания дизельных двигателей: обзор

 Если разделить системы питания дизельных моторов, которые получили наибольшее распространение, можно выделить следующие решения:

  • Система питания, в основе которой лежит ТНВД рядного типа (рядный ТНВД);
  • Система топливоподачи, которая имеет ТНВД распределительного типа;
  • Решения с насос-форсунками;
  • Топливный впрыск Common Rail (аккумулятор высокого давления в общей магистрали).

Указанные системы также имеют большое количество подвидов, при этом в каждом случае тот или иной тип является основным.

  • Итак, начнем с самой простой схемы, которая предполагает наличие рядного топливного насоса. Рядный ТНВД представляет собой давно известное и проверенное решение, которое используется на дизелях не один десяток лет. Такой насос активно используется на спецтехнике, грузовиках, автобусах и т.д. Если сравнивать его с другими системами, насос достаточно большой по своим габаритам и весу.
В двух словах, в основе рядного ТНВД лежат плунжерные пары. Их количество равняется количеству цилиндров двигателя. Плунжерная пара представляет собой цилиндр, который движется в «стакане» (гильзе). При движении вверх происходит сжатие топлива. Затем, когда давление достигает необходимого показателя, происходит открытие специального клапана.

В результате предварительно сжатое топливо поступает на форсунку, после чего происходит впрыск. После того, как плунжер начнет двигаться обратно вниз, открывается канал для впуска топлива. Через канал горючее заполняет пространство над плунжером, далее цикл повторяется. Чтобы солярка попадала в плунжерные пары, дополнительно в системе имеется отдельный подкачивающий насос.

Сами плунжеры работают благодаря тому, что в устройстве насоса имеется кулачковый вал. Этот вал работает подобно распредвалу в ГРМ, где кулачки «толкают» клапана. Сам вал насоса приводится от двигателя, так как ТНВД соединен с мотором при помощи муфты опережения впрыска. Указанная муфта позволяет корректировать работу и подстраивать ТНВД в процессе эксплуатации двигателя.

  • Система питания с распределительным насосом не сильно отличается от схемы с рядным ТНВД. Распределительный ТНВД похож на рядный по конструкции, при этом в нем уменьшено количество плунжерных пар.

Другими словами, если в рядном насосе пары необходимы на каждый цилиндр, то в распределительном достаточно 1 или 2 плунжерных пар. Дело в том, что одной пары в этом случае достаточно для подачи горючего в 2, 3 или даже 6 цилиндров.

Это стало возможным благодаря тому, что плунжер получил возможность не только двигаться вверх (сжатие) и вниз (впуск), но также вращаться вокруг оси. Такое вращение позволило реализовать поочередное открытие выпускных отверстий, через которые дизтопливо под высоким давлением подается на форсунки.

Дальнейшее развитие этой схемы привело к появлению более современного роторного ТНВД. В таком насосе применен ротор, в котором установлены плунжеры. Указанные плунжеры движутся навстречу по отношению друг к другу, а ротор осуществляет вращение. Так происходит сжатие и распределение солярки по цилиндрам мотора.

Главным плюсом распределительного насоса и его разновидностей является сниженный вес и компактность. При  этом настраивать данное устройство сложнее. По этой причине дополнительно используются схемы электронного управления и регулировки.

  • Система питания типа «насос-форсунка» представляет собой схему, где изначально отсутствует отдельный ТНВД. Если точнее, форсунка и насосная секция были объединены в одном корпусе. В основе лежит уже знакомая плунжерная пара.
Решение имеет ряд преимуществ по сравнению с системами, в которых использован ТНВД. Прежде всего, можно легко отрегулировать подачу топлива в  отдельные цилиндры. Также в случае выхода одной форсунки из строя, остальные будут работать.

Также использование насос-форсунок позволяет избавиться от  отдельного привода ТНВД. Плунжеры в насос-форсунке приводятся в действие от распредвала ГРМ, который установлен в ГБЦ.  Такие особенности позволили дизельным моторам с насос-форсунками получить широкое распространение не только  на грузовиках, но и на крупных легковых автомобилях (например, дизельные внедорожники).

  • Система Сommon Rail является одной из самых современных решений в области топливного впрыска. Также данная схема питания позволяет добиться максимальной экономичности одновременно с высоким КПД дизельного двигателя. Параллельно снижается и токсичность отработавших газов.

Система была разработана немецкой фирмой Bosch в 90-х годах. С учетом очевидных преимуществ за короткое время подавляющее большинство дизельных ДВС на легковых и грузовых авто стали оснащать исключительно Сommon Rail.

Общая схема устройства основана на так называемом аккумуляторе высокого давления. Если просто, горючее находится под постоянным давлением, после чего подается к форсункам. Что касается аккумулятора давления, данный аккумулятор фактически является топливной магистралью, куда горючее нагнетается при помощи отдельного ТНВД.

Система Сommon Rail частично напоминает бензиновый инжекторный двигатель, который имеет топливную рампу с форсунками. Бензин в рампу (топливную рейку) нагнетается под небольшим давлением бензонасосом из бака. В дизеле давление намного выше, горючее нагнетает ТНВД.

Благодаря тому, что давление в аккумуляторе постоянное, стало возможным реализовать быстрый и «многослойный»  впрыск топлива через форсунки. Современные системы в двигателях Common Rail позволяют форсункам сделать до 9 дозированных впрысков.

В результате дизельный двигатель с такой системой питания экономичный, производительный, работает мягко, тихо и эластично. Также использование аккумулятора давления позволило сделать конструкцию ТНВД на дизельных моторах более простой.

Добавим, что высокоточный впрыск на двигателях Common Rail является полностью электронным, так как за работой системы следит отдельный блок управления. В системе используется группа датчиков, которые позволяют контроллеру точно определить, сколько дизтоплива нужно подать в цилиндры и в какой момент.

Подведем итоги

Как видно, каждая из рассмотренных систем питания дизельного двигателя имеет  свои преимущества  и недостатки. Если говорить о простейших решениях с рядным ТНВД, их главным плюсом можно считать возможность ремонта и доступность обслуживания.

В схемах с насос-форсунками  нужно помнить о том, что данные элементы чувствительны к качеству топлива и его чистоте. Попадание даже мельчайших частиц может вывести из строя насос-форсунку, в результате чего дорогостоящий элемент потребует замены.

Что касается систем Common Rail, главным недостатком является не только высокая начальная стоимость таких решений, но и сложность и дороговизна последующего ремонта и обслуживания. По этой причине за качеством топлива и состоянием топливных фильтров нужно постоянно следить, а также своевременно проводить плановое обслуживание.

krutimotor.ru

Впрыск топлива в дизельном двигателе и его регулировка

В такте впуска дизельный двигатель впускает только воздух. В такте сжатия этот воздух нагревается до температуры настолько высокой, что дизельное топливо, впрыснутое в цилиндр в конце такта сжатия, воспламеняется самостоятельно. Количество топлива в двигателе дозируется с помощью топливного насоса высокого давления (ТНВД). Топливо впрыскивается под высоким давлением через форсунку в камеру сгорания.

Впрыск топлива должен происходить следующим образом:

  • с точно дозированным количеством топлива в соответствии с нагрузкой двигателя;
  • в требуемый период времени;
  • в точно определенный период времени;
  • способом, соответствующим конкретному процессу сгорания.

Рис. Схема системы топливоподачи дизельного двигателя: 1. Топливный бак; 2. Топливоподкачивающий насос (топливный насос низкого давления); 3. Топливный фильтр; 4. Рядный ТНВД; 5. Устройство опережения момента впрыска; 6. Регулятор; 7. Держатель форсунки с форсункой; 8. Возвратный топливопровод; 9. Накальная свеча с закрытым элементом; 10. Аккумуляторная батарея; 11. Выключатель предварительного накала и стартера; 12. Блок управления предварительным накалом.

ТНВД и регулятор, соединенные с управляющей (контрольной) зубчатой рейкой являются ответственными за то, чтобы указанные условия выполнялись. Количество топлива, впрыснутого за один ход плунжера ТНВД, примерно пропорционально крутящему моменту двигателя.

Если на двигателе используется механический (центробежный) регулятор числа оборотов, то рейка управления соединяется с педалью акселератора («газа») через регулятор.

Рис. Замкнутый контур управления для механического регулятора: 1. Дизельный двигатель; 2. Рядный ТНВД; 3. Регулятор; 4. Обороты двигателя; 5. Количество впрыскиваемого топлива; 6. Педаль акселератора; 7. Ход управляющей рейки; 8. Давление подаваемого воздуха; 9. Желаемое число оборотов; 10. Атмосферное давление; 11. Управление крутящим моментом; 12. Подача при полной нагрузке; 13. Начальное количество.

У электронного регулятора (EDC) педаль акселератора оснащена датчиком, соединенным с электронным блоком управления (ЭБУ или ECU). Когда водитель нажимает на педаль газа, то перемещение преобразуется в соответствующий ход рейки с учетом оборотов двигателя в данный момент времени.

Почему дизельному двигателю нужен регулятор?

У дизельного двигателя не существует положения управляющей рейки, которое бы позволило дизельному двигателю точно поддерживать свои обороты без помощи регулятора. На холостом ходу, к примеру, без регулятора числа оборотов, обороты двигателя будут либо падать, пока двигатель не остановится, либо будут продолжать увеличиваться, что, в конце концов, приведет к саморазрушению двигателя.

Последняя возможность обязана тому, что дизель работает с избытком воздуха, что означает отсутствие эффективного дросселирования поступающей в двигатель смеси при возрастании его оборотов.

К примеру, если холодный двигатель был заведен и остался работать на холостом ходу, тогда как продолжает впрыскиваться начальное количество топлива, то характерное трение вскоре начнет снижаться. То же самое относится к нагрузке двигателя от приводимых от него агрегатов, таких как генератор, воздушный компрессор, ТНВД и т.д. Это означает, что если положение управляющей реики осталось неизменным и рейка не втягивалась для уменьшения количества подаваемого топлива (как сделал бы регулятор), то обороты двигателя будут возрастать все больше и больше (из-за указанного выше падения трения), пока они не достигнут точки саморазрушения. Другими словами, является обязательным, чтобы дизель был оснащен регулятором числа оборотов. В настоящее время для рядных ТНВД используются либо механические (центробежные) регуляторы либо система электронного управления дизельным двигателем (EDC).

Пневматические регуляторы, управляемые давлением впускного коллектора устанавливались ранее на небольшие ТНВД. От них пришлось отказаться в результате возросших требований к точности регулирования и к работе регулятора.

Работа регулятора

Нет сомнений, что когда к двигателю приложена нагрузка, ТНВД должен всегда обеспечивать двигатель необходимым количеством топлива. Все рядные ТНВД имеют отдельную плунжерную пару (плунжер (3) и гильза (1)), называемую еще нагнетательной секцией (элементом), для каждого цилиндра двигателя.

Плунжер двигается в направлении подачи топлива с помощью кулачкового вала, приводимого в движение от двигателя, и возвращается обратно под действием возвратной пружины. Так как ход плунжера не может быть изменен, то количество нагнетаемого топлива может быть отрегулировано только путем изменения эффективного (активного) хода плунжера.

Рис. Работа регулятора

Плунжеры снабжены наклонным спиральным вырезом (каналом), так что требуемый эффективный ход подбирается путем поворота плунжера. Поворот осуществляется с помощью управляющей зубчатой рейки (5), которая находится в зацеплении с плунжером и сама двигается продольно с помощью регулятора. Вращение плунжера перемещает спираль (вырез) (4) для управления моментом окончания подачи (известного также как сброс или открывание отверстия в гильзе) и количеством подачи. Подача начинается в тот момент, когда верхний край плунжера закрывает входное отверстие (2) в стенке гильзы.

В случае максимальной подачи (с) сброс не происходит вплоть до максимального эффективного хода плунжера, другими словами, с максимально возможным количеством подаваемого топлива. При частичной подаче (Ь) сброс происходит раньше в зависимости от положения плунжера при повороте. В конечном положении, что требуется для нулевой подачи (а), т.е. в момент, когда двигатель должен быть остановлен, продольный паз плунжера расположен прямо напротив входного отверстия. Это означает, что нагнетательная камера над плунжером соединяется с топливной магистралью в течение всего хода плунжера, т.е. топливо не подается.

Существует несколько различных конфигураций спирали.

В случае плунжера только с нижней спиралью (вырезом) подача топлива начинается в одинаковой точке хода плунжера вверх, тогда как конец подачи происходит раньше или позже в зависимости от поворота плунжера. Когда плунжер имеет верхнюю спираль (вырез), то может изменяться начало подачи. Имеются также плунжеры, снабженные как верхней, так и нижней.

Снижение оборотов регулятора

Каждый двигатель имеет кривую (характеристику) крутящего момента в соответствии с его максимальной отдачей мощности. Каждое значение оборотов двигателя связано с данным максимальным крутящим моментом. Если нагрузка на двигатель снимается при данных оборотах двигателя, а управляющая рейка соответствующим образом не регулируется, то обороты двигателя могут лишь увеличиваться в пределах управляемого диапазона до числа, определенного заводом-изготовителем двигателя (т.е. от nv — оборотов при полной нагрузке до n1 — низких оборотов холостого хода). Увеличение оборотов двигателя пропорционально изменению нагрузки, т.е. чем больше уменьшение нагрузки двигателя, тем больше увеличение оборотов двигателя.

Этот эффект известен как эффект снижения оборотов и относится к регуляторам с характеристикой снижения оборотов. Снижение оборотов регулятора в основном относится к максимальным оборотам при полной нагрузке (нормированные обороты) и подсчитывается следующим образом:

б = (n10-nv0) / nv0 или б (n10-nv0) / nv0 * 100%

где б — коэффициент снижения оборотов, его называют также просто снижением оборотов); n10 — повышенных оборотов холостого хода (максимальных); nv0 — число максимальных оборотов при полной нагрузке.

Говоря в общем, достаточно большое снижение оборотов увеличивает стабильность общего контура (цепи) управления (регулятор, двигатель и приводимый им в движение агрегат или автомобиль). С другой стороны, снижение оборотов ограничивается условиями работы. Для примера: примерно от 0 до 5% — для двигателей генераторных установок и примерно от 6 до 15% — для автомобильных двигателей.

Рис. Обороты при полной нагрузке с соответствующим управлением оборотами холостого хода: 1. Крутящий момент Md; 2. Обороты двигателя.

Рис. Увеличение оборотов для различных снижений оборотов: 1. Крутящий момент Md; 2. Обороты двигателя; слева — малое снижение оборотов; справа — большое снижение оборотов.

Рис. Снижение оборотов регулятора R Q V: 1. Снижение оборотов; 2. Обороты ТНВД

На рисунках введены следующие обозначения:

  • nvu — минимальные обороты при полной нагрузке,
  • nu — любое значение оборотов при полной нагрузке,
  • nv0 — максимальные обороты при полной нагрузке,
  • n — низкие обороты на холостом ходу,
  • n1 — любое значение оборотов на холостом ходу.
  • n10 — повышенные обороты холостого хода (максимальные).

На рисунке показана практическая иллюстрация эффектов снижения оборотов. При установке требуемых оборотов двигателя на фиксированной величине, действительное число оборотов двигателя изменяется в пределах области снижения оборотов, когда нагрузка двигателя изменяется.

Рис. 1. Крутящий момент Md; 2. Обороты двигателя, n; 3. Диапазон снижения оборотов; 4. Максимальная разница в оборотах; 5. Реальные обороты; 6. Полная нагрузка; 7. Частичная нагрузка; 8. Отсутствие нагрузки; 9. Время t; 10. Установочные обороты.

Функции регулятора

Основной задачей каждого регулятора числа оборотов является ограничение максимальных оборотов двигателя. Другими словами, регулятор должен обеспечивать, чтобы обороты двигателя никогда не превышали максимальных значений, предусмотренных заводом-изготовителем. В зависимости от его типа, регулятор может иметь и другие функции, такие как поддержание определенных оборотов двигателя, например, на холостом ходу или поддержание диапазона оборотов между низкими и высокими оборотами холостого хода (максимальными). Регулятор может также иметь другие функции и функции, выполняемые электронным регулятором (EDC), являются гораздо более широкими, чем функции у механического (центробежного) регулятора.

Различные требования, предъявляемые к регуляторам, стали причиной развития различных типов регуляторов, перечисленных ниже: регуляторы максимальных оборотов. Эти регуляторы разработаны только для ограничения максимальных оборотов двигателя;

регуляторы минимальных и максимальных оборотов.

Кроме максимальных оборотов эти регуляторы также управляют низкими оборотами холостого хода, регуляторы изменяемых оборотов. Эти регуляторы кроме максимальных оборотов и низких оборотов холостого хода также управляют оборотами в промежуточной области, комбинированные регуляторы. Они представляют собой комбинацию регулятора максимальных и минимальных оборотов и регулятора изменяемых оборотов, регуляторы для стационарных силовых установок. Они разработаны для двигателей генераторных установок в соответствии с немецким стандартом DIN 6280. Кроме своей основной задачи, этот регулятор также имеет несколько других функций управления. Они включают в себя автоматическую подачу и отсечку дополнительного топлива, требуемого для запуска и изменение подачи топлива при полной нагрузке в зависимости от оборотов двигателя (управление крутящим моментом), от давления нагнетаемого воздуха или атмосферного давления. Для выполнения этих задач требуется дополнительное оборудование.

Регулировка максимальных оборотов

Рис. Регулировка максимальных оборотов: 1. Ход управляющей рейки; 2. Остановка; 3. Полная нагрузка; 4. Контролируемая область; 5. Полная нагрузка; 6. Без нагрузки; 7. Обороты двигателя.

В зависимости от снижения оборотов, когда нагрузка на двигатель убирается, то максимальные обороты при полной нагрузке nv0 не достигают величины n10 (повышенные обороты холостого хода — максимальные). Регулятор подгоняет их до этого требуемого значения, передвигая управляющую рейку в направлении остановки (прекращая подачу топлива). Управление (регулировка) в области между nvo и пю называется регулировкой максимальных оборотов. Чем выше снижение оборотов, тем выше увеличение оборотов между nvo и n10.

Регулировка промежуточных оборотов

Когда требуется специальное применение (например, в автомобилях с коробкой отбора мощности), то регулятор может поддерживать обороты двигателя в пределах требуемой области (2) между оборотами холостого хода и повышенными оборотами холостого хода (максимальными), (1 — ход управляющей рейки).

Рис. Регулировка промежуточных оборотов

Обороты двигателя (5), таким образом, колеблются только в пределах рабочей области между nv. (полная нагрузка-3) и n1 (без нагрузки-4) в зависимости от нагрузки.

Управление низкими оборотами холостого хода

Регулирование может также иметь место и в самой низкой области оборотов двигателя.

Рис. Управление низкими оборотами холостого хода: 1. Ход управляющей рейки; 2. Область управления; 3. Полная нагрузка; 4. Без нагрузки; 5. Обороты двигателя.

После запуска холодного двигателя, когда управляющая рейка перемещается из пускового положения в положение В, сопротивление двигателя на трение остается достаточно высоким, Это значит, что количество подаваемого топлива для устойчивой работы двигателя будет немного выше того, которое обычно соответствует регулировочной точке L для низких оборотов холостого хода, а обороты двигателя будут немного ниже. При прогреве уменьшение трения будет причиной увеличения оборотов двигателя, и управляющая рейка передвинется обратно в положение L. Это установка низких оборотов холостого хода для двигателя, находящегося при рабочей температуре.

Управление крутящим моментом

Управление крутящим моментом используется для обеспечения полного использования воздуха для сгорания, поступившего в цилиндр двигателя. В таком случае процесс управления не актуален, но на регулятор накладывается более одной функции регулировки. Он разработан для количества топлива, подаваемого для режима полной нагрузки, т.е. для максимального количества топлива, впрыскиваемого в области нагрузок двигателя и которое может сгореть без чрезмерного дымообразования. В общем, потребность в топливе «атмосферного» (т.е. без наддува) дизельного двигателя снижается с ростом оборотов двигателя (уменьшенная относительная скорость воздушного потока, ограничения по температуре, изменяемое смесеобразование). С другой стороны, при постоянном положении управляющей рейки количество топлива, впрыскиваемого ТНВД, увеличивается в определенной области, когда обороты возрастают. Это происходит из-за эффекта дросселирования у отверстия для сброса (сливного отверстия) плунжерной пары ТНВД. Однако впрыскивание избыточного топлива приводит к выбросам дыма и перегреву двигателя. Это означает, что количество впрыскиваемого топлива должно быть адаптировано к потребности двигателя в топливе.

Рис. а) Потребность двигателя в топливе; б) Подача топлива в режиме полной нагрузки без управления крутящим моментом; с) Подача топлива в режиме полной нагрузки с управлением крутящим моментом; 1. Количество подаваемого топлива; 2. Начало управления крутящим моментом; 3. Конец управления крутящим моментом; 4. Область управления крутящим моментом; 5. Обороты двигателя.

У регуляторов числа оборотов с управлением крутящим моментом управляющая рейка передвигается в области управления крутящим моментом на фиксированную величину (так называемый ход управления крутящим моментом) в направлении остановки (отсечки подачи топлива). Таким образом, когда обороты возрастают (от n1, до n2), количество подаваемого топлива уменьшается (принудительное управление крутящим моментом или управление крутящим моментом в направлении управления). Когда обороты двигателя падают (с n2 до n1), подача увеличивается.

Рис. 1. Управление ходом рейки; 2. Начало управления крутящим моментом; 3. Конец управления крутящим моментом; 4. Ход управления крутящим моментом; 5. Обороты двигателя.

Конструкция и расположение приборов для управления крутящим моментом изменяются в соответствии с типом регулятора. Кривая крутящего момента с и без управления крутящим моментом показана на рисунке. Максимальный крутящий момент достигается во всем диапазоне показанных оборотов без превышения пределов дымности.

Рис. 1. Крутящий момент двигателя Md; 2. Начало управления крутящим моментом; 3. Конец управления крутящим моментом; 4. С управлением крутящим моментом; 5. Без управления крутящим моментом; 6. Обороты двигателя.

На двигателях, оснащенных турбонагнетателем с приводом от выхлопных газов, имеющих высокий коэффициент наддува, потребность в топливе на режиме полной нагрузки в областях низких оборотов возрастает настолько, что стандартное увеличение подачи топлива от ТНВД становится недостаточной. В таких случаях управление крутящим моментом должно регулироваться в зависимости от оборотов двигателя или давления нагнетаемого воздуха.

В зависимости от преобладающих условия это осуществляется с использованием либо регулятора, либо компенсатора давления во впускном коллекторе (LDA) или обоих этих устройств.

Характеристики подачи топлива

Рис. Характеристики подачи топлива: а) Потребность двигателя в топливе; б) Подача в режиме полной нагрузки без управления крутящим моментом; с) Подача в режиме полной нагрузки с управлением крутящим моментом; c1 — отрицательное (свободное) управление крутящим моментом; с2 — принудительное (положительное) управление крутящим моментом; 1. Количество подаваемого топлива; 2. Управление крутящим моментом; 3. Отрицательное; 4. Положительное; 5. Обороты двигателя.

Метки: ВпрыскТНВДТопливная система

(1 голосов, средний: 4,00 из 5)

ustroistvo-avtomobilya.ru


Смотрите также