ВНИМАНИЕ! Если Вам ПО ТЕЛЕФОНУ предложили перевести деньги на КИВИ-КОШЕЛЁК, то это означает, что к нашим номерам подключились мошенники!!! Будьте внимательны!

Таблица моментов затяжки резьбовых соединений


Таблица усилий затяжки при монтаже метрического крепежа. WikiСтатья.

В повседневной жизни множество людей и компаний использует крепеж. Чтобы эффективно использовать крепеж, необходимо знать его технические характеристики, в особенности степень затяжки.

Что такое момент затяжки резьбовых соединений?

Определение степени затяжки резьбовых элементов проводится с целью повышения прочности соединения, увеличения срока службы и повышения сопротивляемости соединения различным негативным факторам. Для каждого крепежного элемента есть оптимальная степень затяжки резьбовых элементов на посадочном месте, которая рассчитывается на основе приложенных нагрузок, температурных режимов и свойств материалов.

Момент затяжки – это усилие, прилагаемое к крепежному элементу при его закручивании в резьбовое соединение. Если мы будем закручивать крепеж с меньшим усилием, чем это необходимо, то, под воздействием внешних факторов (например, вибраций), резьбовое соединение может раскрутиться, не обеспечив необходимую герметичность между скрепляемыми деталями. И наоборот, если “перекрутить” крепежный элемент больше, чем это необходимо, может произойти разрушение самого крепежного элемента или скрепляемых деталей. Например, могут появиться сколы, трещины в деталях или сорваться резьба на крепежном элементе.

Для любого размера и класса прочности крепежного элемента определены наилучшие моменты затяжки. Данные значения занесены в специальную таблицу усилий затяжки метрических болтов динамометрическим ключом. Обозначение класса прочности болта обычно указывается на головке болта.

ТОП товаров из нашего каталога

Рассмотрим порядок определения момента затяжки с помощью динамометрического ключа.

Динамометрический ключ можно разделить на несколько видов.

Стрелочный ключ

Самый простой в использовании вид ключа. Принцип его работы основан на отклонении рычага со шкалой относительно неподвижного указателя. Ручка торсион используется для передачи усилия на крепежное изделие. Стрелка указатель с одной стороны прикреплена к головке ключа, а с другой стороны свободна и служит указателем, который показывает значение крутящего момента в определённый момент времени.

Из плюсов можно выделить:

  • низкую стоимость изделия;
  • шкала работает в обе стороны. Она позволяет закручивать крепежные изделия как с правой, так и с левой резьбой.

Из недостатков можно выделить:

  • низкую точность (погрешность измерений составлять от 4 до 10%);
  • данные ключи нельзя отрегулировать и, в связи с этим они со временем изнашиваются и теряют точность измерений, что делает их непригодным к использованию;
  • крайне сложно работать в труднодоступных местах, потому что необходимо всегда следить за затяжкой по стрелке указателю;
  • отсутствует храповый механизм, как у ключа трещотки, в связи с этим ключ приходится всегда переставлять заново;

Предельный ключ (белковый)

Конструкция данного динамометрического ключа показана на картинке. В данном ключе есть специальный механизм, который даёт установить на нём необходимый крутящий момент и передать его на закручиваемый элемент. Также у данного ключа есть храповый механизм, как у обычной ;трещотки. Необходимый момент затяжки можно выставить при помощи шкал, расположенных на корпусе изделия. Как только при закручивании необходимый момент затяжки будет достигнут, прозвучит щелчок и сработает фиксатор, который не позволит превысить выставленную силу момента. Предельный ключ очень удобен в работе, так как при его использовании необходимо просто закручивать соединение до щелчка. Данные ключи имеют большой диапазон крутящего момента (от 5 до 3000 Нм). Размеры присоединительных приводов от 1/4 дюйма до 1 дюйма.

Из плюсов можно выделить:

  • погрешность данного ключа составляет не более 4%;
  • достаточно прост в использовании, так как есть храповый механизм;
  • можно заранее выставить необходимый крутящий момент, при достижении которого ключ издаст характерный щелчок;
  • легко использовать в труднодоступных местах;
  • может работать с крепежными изделиями как с правой, так и с левой резьбой.

Из недостатков можно выделить:

  • необходимость калибровки данного ключи;
  • со временем храповый механизм может выйти из строя, но можно отдельно приобрести рем комплект для некоторых моделей ключа.

Цифровой

По сравнению с предыдущими моделями ключей, данный динамометрический ключ имеет множество возможностей. Специальный датчик ключа генерирует сигнал, который преобразуется в необходимую величину крутящего момента и выводится на экран электронного ключа. У данного ключа минимальная погрешность измерений, благодаря электронным компонентам. На дисплее выставляется необходимый момент закручивания, при достижении которого данный ключ издает звуковой сигнал. Во время работы на экране выводится значение крутящего момента в реальном времени.

Из плюсов можно выделить:

  • вывод значений крутящего момента в разных значениях силы;
  • имеет световую и звуковую индикацию;
  • высокая точность измерений (низкая погрешность);
  • может работать с крепежными изделиями как с правой, так и с левой резьбой;
  • не требует регулировки благодаря электронной начинке;
  • удобство работы за счет храпового механизма;
  • сохраняет измеряемые значения в память устройства.

Из недостатков можно выделить:

  • высокая стоимость по сравнению с ключами других видов.

Данный инструмент должен быть подобран таким образом, чтобы момент затяжки крепежного элемента был на 20−30% меньше, чем максимальный момент на используемом ключе. При попытке превысить предел, ключ быстро выйдет из строя. Усилие на затяжку и тип стали указывается на каждом болте.

Таблица усилий затяжки метрических болтов

Размер Класс прочности N.m*
3.6 4.6 5.6 5.8 6.8 8.8 9.8 10.9 12.9
М1,6 0,05 0,07 0,09 0,11 0,14 0,18 0,21 0,26 0,31
М2 0,11 0,14 0,18 0,24 0,28 0,38 0,42 0,53 0,63
М2,5 0,22 0,29 0,36 0,48 0,58 0,78 0,87 1,09 1,31
М3 0,38 0,51 0,63 0,84 1,01 1,35 1,52 1,90 2,27
М4 0,71 0,95 1,19 1,59 1,91 2,54 2,86 3,57 4,29
М5 1,71 2,28 2,85 3,80 4,56 6,09 6,85 8,56 10,3
М6 2,94 3,92 4,91 6,54 7,85 10,5 11,8 14,7 17,7
М8 7,11 9,48 11,9 15,8 19,0 25,3 28,4 35,5 42,7
М10 14,3 19,1 23,8 31,8 38,1 50,8 57,2 71,5 85,8
М12 24,4 32,6 40,7 54,3 65,1 86,9 97,7 122 147
М14 39 52 65 86,6 104 139 156 195 234
М16 59,9 79,9 99,8 133 160 213 240 299 359
М18 82,5 110 138 183 220 293 330 413 495
М20 117 156 195 260 312 416 468 585 702
М22 158 211 264 352 422 563 634 792 950
М24 202 270 337 449 539 719 809 1011 1213
М27 298 398 497 663 795 1060 1193 1491 1789
М30 405 540 675 900 1080 1440 1620 2025 2430
М33 550 734 917 1223 1467 1956 2201 2751 3301
М36 708 944 1180 1573 1888 2517 2832 3540 4248
М39 919 1226 1532 2043 2452 3269 3678 4597 5517
М42 1139 1518 1898 2530 3036 4049 4555 5693 6832
М45 1425 1900 2375 3167 3800 5067 5701 7126 8551
М48 1716 2288 2860 3313 4576 6101 6864 8580 10296
М52 2210 2947 3684 4912 5895 7859 8842 11052 13263
М56 2737 3650 4562 6083 7300 9733 10950 13687 16425
М60 3404 4538 5673 7564 9076 12102 13614 17018 20422
М64 4100 5466 6833 9110 10932 14576 16398 20498 24597
М68 4963 6617 8271 11029 13234 17646 19851 24814 29777

*где N.m - крутящий момент. Равен произведению силы на плечо ее применения и измеряется в ньютон-метрах. Таким образом, если к гаечному ключу длиной 1 метр (плечо), приложить силу в 1 Ньютон (перпендикулярно на конце ключа), то мы получим крутящий момент равный 1 Нм.

goskrep.ru

Моменты затяжки для метрических болтов и гаек из углеродистой стали

Думаю, только реально «работающие руками» люди могут понять насколько важно точно знать практические и предельные моменты затяжки болтов и гаек из углеродистой стали с метрической резьбой.

Ведь еще неизвестно что лучше: «недотянуть» соединение, или «сорвать резьбу».

Ну что же… Эта проблема решаема, ведь к счастью, есть справочники, в которых все написано.  И сейчас мы рассмотрим какие моменты затяжки для метрических болтов и гаек являются практическими, а какие — предельными

Практические моменты затяжки (М5-М39) классов прочности 4.6, 5.8, 4.6, 5.8, 8.8, 10.9, 12.9 для метрических болтов и гаек из углеродистой стали

При затяжке болта до практического момента затяжки, у него остается запас прочности, достаточный для того, чтобы болт гарантированно не «потек».

Разумеется, совершенно не обязательно в каждом случае затягивать  все соединения до этих значений.

Скорее наоборот. В подавляющем большинстве случаев, дотянув до этих значений, вы можете получить ряд побочных проблем. Например, порвете, продавите или выдавите сделанную из более мягкого материала прокладку. И тем самым только испортите прочность соединения.

Тем не менее, приведенные в таблице практические моменты затяжки для метрических болтов и гаек из углеродистой стали являются допустимыми. А уровень нагрузки на соединение при этом соответствует ориентировочно 60-70% предела текучести.

Резьба/шаг мм

Класс прочности болтов

4.6

5.8

8.8

10.9

12.9

момент затяжки Н*м

5/0.8

2,1

3,5

5,5

7,8

9,3

6/1.0

3,6

5,9

9,4

13,4

16,3

8/1.25

8,5

14,4

23,0

31,7

38,4

10/1.5

16,3

27,8

45,1

62,4

75,8

12/1.75

28,8

49,0

77,8

109,4

130,6

14/2.0

46,1

76,8

122,9

173,8

208,3

16/2.0

71,0

118,1

189,1

265,9

319,7

18/2.5

98,9

165,1

264,0

370,6

444,5

20/2.5

138,2

230,4

369,6

519,4

623,0

22/2.5

186,2

311,0

497,3

698,9

839,0

24/3.0

239,0

399,4

638,4

897,6

1075,2

27/3.0

345,6

576,0

922,6

1296,0

1555,2

30/3.5

472,3

786,2

1257,6

1766,4

2121,6

33/3.5

636,5

1056,0

1699,2

2380,8

2860,8

36/4.0

820,8

1363,2

2188,8

3081,6

3696,0

39/4.0

1056,0

1756,8

2820,2

3955,2

4742,4

Предельные моменты затяжки (М6-М42) классов прочности 8.8, 10.9, 12.9 для метрических болтов и гаек из углеродистой стали

А вот приведенные в настоящей таблице моменты затяжки болтов и гаек уже являются предельными. Или максимально допустимыми.

При превышении данных значений, Вы практически наверняка испортите соединение. Что называется — «сорвете резьбу». Своими собственными руками.

Резьба/шаг мм

Класс прочности болта

8.8

10.9

12.9

предельный момент затяжки Н*м

6/1.0

10

13

16

8/1.25

25

33

40

10/1.5

50

66

80

12/1.75

85

110

140

14/2.0

130

180

210

16/2.0

200

280

330

18/2.5

280

380

460

20/2.5

400

540

650

22/2.5

530

740

880

24/3.0

670

940

1130

27/3.0

1000

1400

1650

30/3.5

1330

1800

2200

33/3.5

1780

2450

3000

36/4.0

2300

3200

3850

39/4.0

3000

4200

5050

42/4,5

3700

5200

6250

pro-krepezh.ru

Назначение моменты затяжки резьбовых соединений (Таблица)

При назначении момента затяжки стандартизованного крепежа руководствоваться таблицей 1

Номинальный диаметр резьбы d, мм

Класс прочности крепежной детали с наружной резьбой (предел текучести σТ, МПа)

36

(180)

46

(240)

58

(400)

88

(640)

109

(900)

129

(1080)

10

12 (1,2)

16 (1,6)

28 (2,8)

44 (4,4)

63 (6,3)

75 (7,5)

12

21 (2,1)

29 (2,9)

48 (4,8)

77 (7,7)

108 (10,8)

130 (13)

14

34 (3,4)

46 (4,6)

76 (7,6)

122 (12,2)

172 (17,2)

207 (20,7)

16

51 (5,1)

68 (6,8)

114 (11,4)

183 (18,3)

258 (25,8)

309 (30,9)

18

73 (7,3)

97 (9,7)

163 (16,3)

261 (26,1)

367 (36,7)

440 (44)

20

100 (10)

134 (13,4)

224 (22,4)

358 (35,8)

504 (50,4)

604 (60,4)

22

134 (13,4)

178 (17,8)

298 (29,8)

477 (47,7)

670 (67)

804 (80,4)

24

174 (17,4)

232 (23,2)

387 (38,7)

619 (61,9)

870 (87)

1045 (104,5)

27

248 (24,8)

330 (33)

551 (55,1)

881 (88,1)

1240 (124)

1488 (148,8)

30

340 (34)

453 (45,3)

756 (75,6)

1209 (120,9)

1701 (170,1)

2041 (204,1)

33

452 (45,2)

603 (60,3)

1006 (100,6)

1609 (160,9)

2264 (226,4)

2716 (271,6)

36

587 (58,7)

783 (78,3)

1306 (130,6)

2090 (209)

2939 (293,9)

3527 (352,7)

Момент затяжки М , Н·м (кгс·м)

При назначении момента затяжки нестандартизованного крепежа (или если в обозначении крепежа отсутствует класс прочности) руководствоваться таблицей 2

Номинальный диаметр резьбы d, мм

Материал крепежной детали с наружной резьбой (предел текучести σТ, МПа)

Сталь

12Х18Н10Т

(196)

Сталь

Ст3

(235)

Сталь

10Г2

(245)

Сталь

09Г2С

(284)

Сталь

35

(314)

Сталь

20Х13

(441)

10

13 (1,3)

16 (1,6)

17 (1,7)

19 (1,9)

21 (2,1)

30 (3)

12

23 (2,3)

28 (2,8)

29 (2,9)

34 (3,4)

37 (3,7)

53 (5,3)

14

37 (3,7)

45 (4,5)

47 (4,7)

54 (5,4)

60 (6)

84 (8,4)

16

56 (5,6)

67 (6,7)

70 (7)

81 (8,1)

90 (9)

126 (12,6)

18

80 (8)

95 (9,5)

100 (10)

115 (11,5)

128 (12,8)

180 (18)

20

109 (10,9)

131 (13,1)

137 (13,7)

159 (15,9)

175 (17,5)

246 (24,6)

22

146 (14,6)

175 (17,5)

182 (18,2)

211 (21,1)

234 (23,4)

328 (32,8)

24

189 (18,9)

227 (22,7)

237 (23,7)

274 (27,4)

303 (30,3)

426 (42,6)

27

270 (27)

323 (32,3)

337 (33,7)

391 (39,1)

432 (43,2)

607 (60,7)

30

370 (37)

444 (44,4)

463 (46,3)

536 (53,6)

593 (59,3)

833 (83,3)

33

493 (49,3)

591 (59,1)

616 (61,6)

714 (71,4)

789 (78,9)

1109 (110,9)

36

640 (64)

767 (76,7)

800 (80)

927 (92,7)

1025 (102,5)

1440 (144)

Момент затяжки М , Н·м (кгс·м)

Пример: «» (текучести материала крепежа σТ = 180 МПа).

Согласно таблице 1 момент затяжки должен быть 100 Н·м (10 кгс·м).

Пример: Крепежная деталь М16 из стали 10Г2 (предел текучести σТ = 245 МПа).

Согласно таблице 2 момент затяжки должен быть 70 Н·м (7 кгс·м).

infotables.ru

Таблица нормативных моментов затяжки резьбовых соединений

1. Таблица моментов затяжки для болтов и гаек a Если нет специальных указаний, затягивайте гайки и болты с метрической резьбой до мо'

мента, указанного в таблице ниже. a Приводимая ниже таблица применима к болтам, показанным на рис. А.

2. Таблица моментов затяжки болтов фланцевых соединений a Если нет особых указаний, при затяжке болтов фланцевых соединений пользуйтесь нор' мативами, приведенными ниже.

3. Таблица моментов затяжки втулок трубных соединений с уплотнительным кольцом a Если нет особых указаний, при затяжке втулок разъемов трубопроводов с уплотнительным кольцом пользуйтесь нормативами, приведенными ниже.

4. Таблица моментов затяжки заглушек с уплотнительным кольцом a Если нет особых указаний, при затяжке заглушек с уплотнительным кольцом пользуйтесь нормативами, приведенными ниже.

5. Таблица моментов затяжки для шлангов (с коническим и торцевым уплотнениями) a Если нет особых указаний, при затяжке шлангов (с коническим и торцевым уплотнениями) пользуйтесь нормативами, приведенными ниже a Приведенные ниже моменты применяются при нанесении на резьбу моторного масла.

6. Таблица моментов затяжки для соединений с торцевым уплотнением a Затягивайте соединения с торцевым уплотнением (накидные гайки) на трубах низкого давления из плакированной стали, используемые на двигателях, до моментов, представ' ленных в следующей таблице. a Прикладывайте следующие моменты затяжки к соединениям с торцевым уплотнением, предварительно нанеся на их резьбовые участки слой моторного масла.

Для справки: В зависимости от конкретных технических характеристик используются соединения с торцевым уплотнением, размеры которых указаны в скобках ( ).

7. Таблица моментов затяжки для двигателей серии 102, 107 и 114 (болты и гайки) a Если нет особых указаний, при затяжке болтов и гаек с метрической резьбой на

двигателях серии 102, 107 и 114 пользуйтесь нормативами, приведенными ниже.

8. Таблица моментов затяжки для двигателей серии 102, 107 и 114 (шарнирные соединения) a Если нет особых указаний, при затяжке шарнирных соединений с метрической резьбой на двигателях серии 102, 107 и 114 пользуйтесь нормативами, приведенными ниже.

9. Таблица моментов затяжки для двигателей серии 102, 107 и 114 (Винты с конической резьбой) a Если нет особых указаний, при затяжке винтов с конической резьбой (ед. изм: дюйм) на двигателях серии 102, 107 и 114 пользуйтесь нормативами, приведенными ниже.

www.imparts55.ru

Метод приложения крутящего момента

Самый распространенный и, вероятно, самый простой метод затяжки резьбовых соединений. Он заключается в создании на гайке крутящего момента, обеспечивающего необходимое усилие предварительной затяжки. А главное его преимущество в том, что он очень прост, занимает минимум времени и используемый инструмент сравнительно не дорог.

Крутящий момент (Мкр, в Нм) – это момент силы, приложенной к гайке на определенном расстоянии от её центра (произведение силы на плечо), действие которого вызывает поворот гайки вокруг оси.

Болт в резьбовом соединении находится под постоянным механическим напряжением и устойчив к усталости. Однако, если первоначальное усилие слишком мало, под действием изменяющихся нагрузок болт быстро будет повреждаться. Если первоначальное усилие слишком велико, процесс затяжки может привести к разрушению болта. Следовательно, надежность зависит от правильности выбора первоначального усилия и, соответственно, необходим контроль крутящего момента на гайке.

Метод заключается в создании на гайке крутящего момента, в результате чего гайка закручивается по резьбе, создавая усилие затяжки

Расход приложенного усилия Расположение трущихся поверхностей

Критичным фактором при затяжке резьбового соединения является усилие предварительной затяжки соединяемых деталей. Крутящий момент косвенно характеризует величину усилия предварительной затяжки.

Усилие предварительной затяжки (Q, в H), на которое производится затяжка резьбового соединения, обычно принимается в пределах 75-80%, в отдельных случаях 90%, от пробной нагрузки.

Пробная нагрузка (N, в H) является контрольной величиной, которую стержневая крепежная деталь должна выдержать при испытаниях. Пробная нагрузка приблизительно, на 5%-10% меньше, произведения предела текучести стержневой крепежной детали на номинальную площадь сечения.

Пробная нагрузка, в соответствии с ГОСТ 1759.4, для крепежных деталей с классом прочности 6.8 и выше составляет 74-79% от минимальной разрушающей нагрузки (P, в H).

Минимальная разрушающая нагрузка соответствует произведению предела прочности (временному сопротивлению разрыву) стержневой крепежной детали на номинальную площадь сечения.

Соответственно, усилие предварительной затяжки не должно приводить к переходу стержневой крепежной детали из области упругой в область пластической деформации материала.

Нередко возникает вопрос почему «предварительной». Дело в том, что затяжка соединений подразумевает создание во всех деталях - и крепежных, и соединяемых, некоторых напряжений. При этом в упруго напряженных телах проявляются некоторые механизмы пластических деформаций, ведущие к убыванию напряжений во времени (явление релаксации напряжений). Поэтому по истечении некоторого времени усилие затяжки соединения несколько снижается без каких либо дополнительных силовых воздействий на него.

Требуемый крутящий момент затяжки конкретного соединения зависит от нескольких переменных:

  1. Коэффициент трения между гайкой и стержневой крепежной деталью;
  2. Коэффициент трения между поверхностью гайки и поверхностью соединяемой детали;
  3. Качество и геометрия резьбы.

Наибольшее значение имеет трение в резьбе между гайкой и стержневой крепежной деталью, а также гайкой и поверхностью соединяемой детали, которые зависят от таких факторов как, состояние контактных поверхностей, вид покрытия, наличие смазочного материала, погрешности шага и угла профиля резьбы, отклонение от перпендикулярности опорного торца и оси резьбы, скорость завинчивания и др.

Потери на трение могут быть достаточно большими. При практически сухом трении, грубой поверхности и усадке материала, потери могут быть такими большими, что при затяжке на непосредственно напряжение соединения останется не более 10% момента (см. рисунок выше). Остальные 90% уходят на преодоление сопротивления трения и усадку.

Для иллюстрации покажем следующий пример: когда оборудование установлено, соединения новые и чистые. Через несколько лет работы они становятся загрязненными, перекодированными и т.п. Таким образом, при откручивании и затяжке, «паразитное» трение больше. И хотя гайковерт будет показывать требуемый момент, требуемое сжатие соединения не будет достигнуто. И когда при эксплуатации, на резьбовое соединение будет воздействовать нагрузки или вибрация, велик риск самоослабления соединения и как результат — аварии.

Коэффициент трения можно снизить, используя масло, но не чрезмерно, поскольку при этом велика опасность чрезмерного падения сопротивления, и превышения силы напряжения соединения, что может привести к разрушению стержневой крепежной детали.

Значения коэффициента трения в реальных условиях сборки можно лишь прогнозировать. Как показывают многочисленные эксперименты, они не стабильны. В табл. приведены их справочные значения.

Таблица Значения коэффициентов трения в резьбе стержневой крепежной детали из стали µр и между поверхностью гайки и поверхностью соединяемой детали µт

Вид покрытия

Коэффициент трения

Без смазочного материала

Машинное масло

Солидол синтетический

Машинное масло с МоS2

Без покрытия

µр

0,32-0,52

0,19-0,24

0.16-0,21

0,11-0,15

µт

0,14-0,24

0,12-0.14

0,11-0,14

0,07-0,10

Цинкование

µр

0,24-0,48

0,15-0,20

0,14-0,19

0,14-0,19

µт

0,07-0.10

0.09-0,12

0,08-0,10

0,06-0,09

Фосфатирование

µр

0,15-0,50

0,15-0,20

0,15-0.19

0.14-0,16

µт

0,09-0,12

0,10-0,13

0,09-0,13

0,07-0,13

Оксидирование

µр

0.50-0,84

0,39-0.51

0,37-0,49

0.15-0,21

µт

0,20-0,43

0,19-0.29

0.19-0,29

0,07-0,11

Для крепежа из нержавеющей стали А2 и А4 коэффициенты трения:

  1. Без смазочного материала: µр– 0,23- 0,50 µт — 0,08-0,50
  2. Со смазкой, включающей хлоропарафин: µр– 0,10- 0,23 µт — 0,08-0,12

Номинальный крутящий момент рассчитывается по формуле:

Мкр = 0,001 Q*(0,16*Р + µр *0 ,58* d2 + µт *0,25*(dт + d0)),

где µр– коэффициент трения в резьбе между гайкой и стержневой крепежной деталью;

µт — коэффициент трения между поверхностью гайки и поверхностью соединяемой детали;

dт – диаметр опорной поверхности головки болта или гайки, мм;

d0 – диаметр отверстия под крепёжную деталь, мм;

Р – шаг резьбы, мм;

d2– средний диаметр резьбы, мм;

Q – усилие предварительной затяжки.

Для упрощения расчетов Мкр коэффициенты трения усредняют. Средние коэффициенты трения крепежных соединений из стали соответствуют следующим состояниям поверхности:

- 0,1 – фосфатированный или оцинкованный болт, хорошо смазанная поверхность -0,14 – химически оксидированный или оцинкованный болт, плохое качество смазки

-0,2 – болт без покрытия, нет смазки

Усилие предварительной затяжки определяются требованиями к соединению, поэтому наши рекомендации выбора усилий предварительной затяжки и крутящего момента, приведенные в таблицах, являются справочными и не могут быть приняты как руководство к действию, учитывая множество факторов оказывающих роль на качество соединения.

Для выбора усилия предварительной затяжки резьбовых соединений и крутящего момента различного класса прочности можно использовать приведенные ниже таблицы. Таблицы приведены для соединений, имеющих средний коэффициент трения 0,14.  

Усилие предварительной затяжки и крутящий момент резьбового соединения с крупным шагом резьбы и коэффициентом трения 0,14

Номинальный диаметр резьбы

Шаг резьбы, P

Номинальная площадь сечения As, мм²

Усилие предварительной затяжки Q, H

Крутящий момент Мкр Нм

4.6

5.6

8.8

10.9

12.9

4.6

5.6

8.8

10.9

12.9

М4

0,7

8,78

1280

1710

4300

6300

7400

1,02

1,37

3,3

4,8

5,6

М5

0,8

14,2

2100

2790

7000

10300

12000

2,0

2,7

6,5

9,5

11,2

М6

1,0

20,1

2960

3940

9900

14500

17000

3,5

4,6

11,3

16,5

19,3

М8

1,25

36,6

5420

7230

18100

26600

31100

8,4

11

27,3

40,1

46,9

М10

1,5

58

8640

11500

28800

42200

49400

17

22

54

79

93

М12

1,75

84,3

12600

16800

41900

61500

72000

29

39

93

137

160

М14

2,0

115

17300

23100

57500

84400

98800

46

62

148

218

255

М16

2,0

157

23800

31700

78800

115700

135400

71

95

230

338

395

М18

2,5

193

28900

38600

99000

141000

165000

97

130

329

469

549

М20

2,5

245

37200

49600

127000

181000

212000

138

184

464

661

773

М22

2,5

303

46500

62000

158000

225000

264000

186

250

634

904

1057

М24

3,0

353

53600

71400

183000

260000

305000

235

315

798

1136

1329

М27

3,0

459

70600

94100

240000

342000

400000

350

470

1176

1674

1959

М30

3,5

561

85700

114500

292000

416000

487000

475

635

1597

2274

2662

М33

3,5

694

107000

142500

363000

517000

605000

645

865

2161

3078

3601

М36

4,0

817

125500

167500

427000

608000

711000

1080

1440

2778

3957

4631

М39

4,0

976

151000

201000

512000

729000

853000

1330

1780

3597

5123

5994

Усилие предварительной затяжки и крутящий момент резьбового соединения с мелким шагом резьбы и коэффициентом трения 0,14

Номинальный диаметр резьбы

Шаг резьбы, P

Номинальная площадь сечения As, мм²

Усилие предварительной затяжки Q, H

Крутящий момент Мкр Нм

8.8

10.9

12.9

8.8

10.9

12.9

М8

1

39,2

19700

28900

33900

29,2

42,8

50,1

М10

1,25

61,2

30800

45200

52900

57

83

98

М12

1,25

92,1

46800

68700

80400

101

149

174

М14

1,5

125

63200

92900

108700

159

234

274

М16

1,5

167

85500

125500

146900

244

359

420

М18

1,5

216

115000

163000

191000

368

523

613

М20

1,5

272

144000

206000

241000

511

728

852

М22

1,5

333

178000

253000

296000

692

985

1153

М24

2

384

204000

290000

339000

865

1232

1442

М27

2

496

264000

375000

439000

1262

1797

2103

М30

2

621

331000

472000

552000

1756

2502

2927

ОТКРУЧИВАНИЕ

При откручивании гаек требуется крутящий момент большей величины, чем при затяжке. Это объясняется коррозией резьбового соединения, взаимным проникновением материалов болта и гайки в зоне резьбы под действием длительной нагрузки.

Общее правило – при откручивании требуется момент в 1,3-1,5 раза больший, чем при затяжке!

При откручивании прокорродированных и закрашенных соединений часто требуется инструмент с моментом в 2 раза больше, чем при затяжке. Но лучше в таких случаях использовать специальные средства для разрушения продуктов коррозии. Это снизит трение и, соответственно, силы воздействующие на упорную часть инструмента, продлевая срок его жизни.

smetiz.ru

Крутящий момент для затяжки оцинкованных болтов

Таблица Усилие предварительной затяжки и крутящий момент резьбового соединения с крупным шагом резьбы и коэффициентом трения 0,14

Номинальный диаметр резьбы Шаг резьбы, P Номинальная площадь сечения As, мм2 Усилие предварительной затяжки Q, H Крутящий момент Мкр Нм
4.6 5.6 8.8 10.9 12.9 4.6 5.6 8.8 10.9 12.9
М4 0,7 8,78 1280 1710 4300 6300 7400 1,02 1,37 3,3 4,8 5,6
М5 0,8 14,2 2100 2790 7000 10300 12000 2,0 2,7 6,5 9,5 11,2
М6 1,0 20,1 2960 3940 9900 14500 17000 3,5 4,6 11,3 16,5 19,3
М8 1,25 36,6 5420 7230 18100 26600 31100 8,4 11 27,3 40,1 46,9
М10 1,5 58 8640 11500 28800 42200 49400 17 22 54 79 93
М12 1,75 84,3 12600 16800 41900 61500 72000 29 39 93 137 160
М14 2,0 115 17300 23100 57500 84400 98800 46 62 148 218 255
М16 2,0 157 23800 31700 78800 115700 135400 71 95 230 338 395
М18 2,5 193 28900 38600 99000 141000 165000 97 130 329 469 549
М20 2,5 245 37200 49600 127000 181000 212000 138 184 464 661 773
М22 2,5 303 46500 62000 158000 225000 264000 186 250 634 904 1057
М24 3,0 353 53600 71400 183000 260000 305000 235 315 798 1136 1329
М27 3,0 459 70600 94100 240000 342000 400000 350 470 1176 1674 1959
М30 3,5 561 85700 114500 292000 416000 487000 475 635 1597 2274 2662
М33 3,5 694 107000 142500 363000 517000 605000 645 865 2161 3078 3601
М36 4,0 817 125500 167500 427000 608000 711000 1080 1440 2778 3957 4631
М39 4,0 976 151000 201000 512000 729000 853000 1330 1780 3597 5123 5994

Таблица Усилие предварительной затяжки и крутящий момент резьбового соединения с мелким шагом резьбы и коэффициентом трения 0,14

Номинальный диаметр резьбы Шаг резьбы, P Номинальная площадь сечения As, мм2 Усилие предварительной затяжки Q, H Крутящий момент Мкр Нм
8.8 10.9 12.9 8.8 10.9 12.9
М8 1 39,2 19700 28900 33900 29,2 42,8 50,1
М10 1,25 61,2 30800 45200 52900 57 83 98
М12 1,25 92,1 46800 68700 80400 101 149 174
М14 1,5 125 63200 92900 108700 159 234 274
М16 1,5 167 85500 125500 146900 244 359 420
М18 1,5 216 115000 163000 191000 368 523 613
М20 1,5 272 144000 206000 241000 511 728 852
М22 1,5 333 178000 253000 296000 692 985 1153
М24 2 384 204000 290000 339000 865 1232 1442
М27 2 496 264000 375000 439000 1262 1797 2103
М30 2 621 331000 472000 552000 1756 2502 2927

smetiz.ru

Таблица крутящих моментов для затяжки типовых резьбовых соединений

Таблица крутящих моментов для затяжки типовых резьбовых соединений

Компания Технофорс всегда с должной ответственностью относится к потребностям и пожеланиям Заказчика в каждом отдельно взятом случае. Такой подход позволяет всегда максимально точно подобрать необходимый Вам гидравлический, пневматический, электрический или ручной гайковерт.

При подборе моментных гайковертов технические специалисты ООО «Технофорс» наиболее часто сталкиваются с тем, что Заказчик не знает какой момент ему необходим для обслуживания резьбового соединения, так как наиболее распространенным показателем правильного момента затяжки на предприятии является «затяжка до хруста». В свою очередь такой подход значительно ухудшает качество затяжки, надежность всей конструкции, что негативно сказывается и на всем узле оборудования.

Наши сотрудники всегда индивидуально подходят к решению таких проблем и предлагают сразу несколько видов высокоточного оборудования, для того чтобы максимально решить поставленные задачи. Наша компания имеет самый широкий спектр гидравлических, пневматических, электрических и ручных гайковертов в Украине.

Таблица, приведенная ниже позволит Вам, самостоятельно подобрать необходимый крутящий момент при обслуживании резьбового соединения. В зависимости от момента и остальных факторов Вы сможете подобрать для нужд Вашего предприятия электрический или гидравлический гайковерт, пневматический гайковерт или мультипликатор момента (ручной гайковерт).

Данные значения крутящего моментаявляются ориентировочными для метрической резьбы DIN13 (коэффициент трения - 0,14; новый винт, смазка). При использовании молибденовой смазки, рекомендуется уменьшить крутящий момент на 20%. Крутящие моменты рассчитывались исходя из класса прочности резьбового соединения – 8,8; 10,9; 12,9.

Настоятельно рекомендуем рассчитывать момент затяжки исходя из данных и технических характеристик конкретного резьбового соединения согласно технической документации на Ваше оборудование. Все нижеуказанные значения являются ориентировочными и несут ознакомительный характер. За более детальной информацией, просьба связаться с нашими специалистами

C внутренним шестигранником

Стандартное резьбовое соединение

8,8

10,9

12,9

Диаметр резьбы

Размер, мм

Диаметр резьбы

Размер, мм

М14

S12

М14

S22

140Нм

195Нм

235Нм

М16

S14

М16

S24

210Нм

300Нм

360Нм

М18

S14

М18

S27

290Нм

410Нм

490Нм

М20

S17

М20

S30

410Нм

580Нм

720Нм

М22

S17

М22

S32

560Нм

785Нм

950Нм

М24

S19

М24

S36

710Нм

1000Нм

1200Нм

М27

S19

М27

S41

1050Нм

1500Нм

1775Нм

М30

S22

М30

S46

1420Нм

2010Нм

2400Нм

М33

S24

М33

S50

1930Нм

2700Нм

3300Нм

М36

S27

М36

S55

2480Нм

3500Нм

4200Нм

М39

-

М39

S60

3225Нм

4500Нм

5450Нм

М42

S32

М42

S65

4000Нм

5600Нм

6700Нм

М45

-

М45

S70

5000Нм

7000Нм

8400Нм

М48

S36

М48

S75

6000Нм

8500Нм

10150Нм

М52

-

М52

S80

7750Нм

10900Нм

13100Нм

М56

S41

М56

S85

9650Нм

13600Нм

16300Нм

М60

-

М60

S90

12000Нм

16900Нм

20200Нм

М64

S46

М64

S95

14400Нм

20300Нм

24300Нм

М68

-

М68

S100

17600Нм

24700Нм

29700Нм

М72

S55

М72

S105

21100Нм

29650Нм

35600Нм

М76

-

М76

S110

25000Нм

35100Нм

42100Нм

М80

S65

М80

S115

29300Нм

41200Нм

49500Нм

М90

S75

М90

S130

42500Нм

59800Нм

71800Нм

М100

S85

М100

S145

59200Нм

83250Нм

99900Нм

technoforce.com.ua


Смотрите также